Given an unstable hybrid stochastic differential equation (SDE), can we design a feedback control, based on the discrete-time observations of the state at times 0, τ, 2τ, • • • , so that the controlled hybrid SDE becomes asymptotically stable? It has been proved that this is possible if the drift and diffusion coefficients of the given hybrid SDE satisfy the linear growth condition. However, many hybrid SDEs in the real world do not satisfy this condition (namely, they are highly nonlinear) and there is no answer to the question yet if the given SDE is highly nonlinear. The aim of this paper is to tackle the stabilization problem for a class of highly nonlinear hybrid SDEs. Under some reasonable conditions on the drift and diffusion coefficients, we show how to design the feedback control function and give an explicit bound on τ (the time duration between two consecutive state observations), whence the new theory established in this paper is implementable.
For the past few decades, the stability criteria for the stochastic differential delay equations (SD-DEs) have been studied intensively. Most of these criteria can only be applied to delay equations where their coefficients are either linear or nonlinear but bounded by linear functions. Recently, the stability criterion for highly nonlinear hybrid stochastic differential equations is investigated in [Fei, Hu, Mao and Shen, Automatica, 2017]. In this paper, we investigate a class of highly nonlinear hybrid stochastic integro-differential delay equations (SIDDEs). First, we establish the stability and boundedness of hybrid stochastic integro-differential delay equations. Then the delay-dependent criteria of the stability and boundedness of solutions to SIDDEs are studied. Finally, an illustrative example is provided.
This paper is concerned with the existence of mild solutions for a class of fractional neutral stochastic integro-differential equations with infinite delay in Hilbert spaces. A sufficient condition for the existence is obtained under non–Lipschitz conditions by means of Sadovskii's fixed point theorem. An example is given to illustrate the theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.