In a photovoltaic (PV)-battery integrated system, the battery undergoes frequent charging and discharging cycles that reduces its operational life and affects its performance considerably. As such, an intelligent power control approach for a PV-battery standalone system is proposed in this paper to improve the reliability of the battery along its operational life. The proposed control strategy works in two regulatory modes: maximum power point tracking (MPPT) mode and battery management system (BMS) mode. The novel controller tracks and harvests the maximum available power from the solar cells under different atmospheric conditions via MPPT scheme. On the other hand, the state of charge (SOC) estimation technique is developed using backpropagation neural network (BPNN) algorithm under BMS mode to manage the operation of the battery storage during charging, discharging, and islanding approaches to prolong the battery lifetime. A case study is demonstrated to confirm the effectiveness of the proposed scheme which shows only 0.082% error for real-world applications. The study discloses that the projected BMS control strategy satisfies the battery-lifetime objective for off-grid PV-battery hybrid systems by avoiding the over-charging and deep-discharging disturbances significantly.
The Internet of Things (IoT) plays an indispensable role in present-day household electricity management. Nevertheless, practical development of cost-effective intelligent condition monitoring, protection, and control techniques for household distribution systems is still a challenging task. This paper is taking one step forward into a practical implementation of such techniques by developing an IoT Smart Household Distribution Board (ISHDB) to monitor and control various household smart appliances. The main function of the developed ISHDB is collecting and storing voltage, current, and power data and presenting them in a user-friendly way. The performance of the developed system is investigated under various residential electrical loads of different energy consumption profiles. In this regard, an Arduino-based working prototype is employed to gather the collected data into the ThingSpeak cloud through a Wi-Fi medium. Blynk mobile application is also implemented to facilitate real-time monitoring by individual consumers. Microprocessor technology is adopted to automate the process, and reduce hardware size and cost. Experimental results show that the developed system can be used effectively for real-time home energy management. It can also be used to detect any abnormal performance of the electrical appliances in real-time through monitoring their individual current and voltage waveforms. A comparison of the developed system and other existing techniques reveals the superiority of the proposed method in terms of the implementation cost and execution time.
Charging a group of series-connected batteries of a PV-battery hybrid system exhibits an imbalance issue. Such imbalance has severe consequences on the battery activation function and the maintenance cost of the entire system. Therefore, this paper proposes an active battery balancing technique for a PV-battery integrated system to improve its performance and lifespan. Battery state of charge (SOC) estimation based on the backpropagation neural network (BPNN) technique is utilized to check the charge condition of the storage system. The developed battery management system (BMS) receives the SOC estimation of the individual batteries and issues control signal to the DC/DC Buck-boost converter to balance the charge status of the connected group of batteries. Simulation and experimental results using MATLAB-ATMega2560 interfacing system reveal the effectiveness of the proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.