The present study aimed to investigate the molecular mechanism of the Astragalus–Scorpion drug pair in the treatment of prostate cancer (PCa). We employed network pharmacology and molecular docking technology to retrieving the active ingredients and corresponding targets of Astragalus–Scorpion by using TCMSP, BATMAN‐TCM, TCMID and Swiss Target Prediction Databases. The targets related to PCa were retrieved through GeneCards. Cytoscape software was used to construct the ‘active ingredient–target disease’ network, and GO and KEGG enrichment analyses were performed on the common targets. Autodock software was used for molecular docking verification. In total, 26 active ingredients, 340 potential targets related to active ingredients and 122 common targets were screened from Astragalus–Scorpion drug pair. The core targets of the protein–protein interaction (PPI) network were JUN, AKT1, IL6, MAPK1 and RELA, whereas the core active ingredients were quercetin, kaempferol, formononetin, 7‐o‐methylisomucronulatol and calycosin. Nearly 762 GO entries and 154 pathways were obtained by using the pathway enrichment analysis. Molecular docking results revealed that quercetin and kaempferol bind to AKT1 and formononetin binds to RELA, all of which were found to be stable bounds.
Objective: To investigate the molecular mechanism of Astragalus-Scorpion in the treatment of prostate cancer by network pharmacology and molecular docking technology. Methods: Using TCMSP, BATMAN-TCM, TCMID and Swiss TargetPrediction Databases to retrieve the active ingredients and corresponding targets of Astragalus-Scorpion. The targets related to prostate cancer were retrieved through GeneCards, so as to obtain the common targets of Astragalus-Scorpion and prostate cancer. The common targets were input into the STRING database for protein interaction analysis. Cytoscape software was used to construct the active “ingredient-target-disease” network, and GO and KEGG enrichment analysis were performed on the common targets. To screen the core ingredients and targets that play therapeutic roles, Autodock software was used for molecular docking verification. Results: 27 active ingredients, 340 potential targets related to active ingredients, 898 targets related to disease and 122 common targets were screened from Astragalus-Scorpion totally. The core targets of PPI network were JUN, AKT1, IL6, MAPK1 and RELA, while the core active ingredients in the active ingredient-target-disease network were quercetin, kaempferol, formononetin, 7-o-methylisomucronulatol and calycosin.762 GO entries and 154 pathways were obtained by enrichment analysis totally. The molecular docking results showed that quercetin binds to AKT1 and RELA, kaempferol to AKT1, and formononetin to RELA, all of which were stable. Conclusion: Quercetin, kaempferol and others in the Astragalus-Scorpion can regulate multiple signaling pathways such as PI3K-Akt signaling pathway by binding to targets such as AKT1 related to prostate cancer, inhibit the proliferation of tumor to play a role for prostate cancer.
Objective: To investigate the molecular mechanism of Astragalus-Scorpion in the treatment of prostate cancer by network pharmacology and molecular docking technology.Methods: Using TCMSP, BATMAN-TCM, TCMID and Swiss TargetPrediction Databases to retrieve the active ingredients and corresponding targets of Astragalus-Scorpion. The targets related to prostate cancer were retrieved through GeneCards, so as to obtain the common targets of Astragalus-Scorpion and prostate cancer. The common targets were input into the STRING database for protein interaction analysis. Cytoscape software was used to construct the active “ingredient-target-disease” network, and GO and KEGG enrichment analysis were performed on the common targets. To screen the core ingredients and targets that play therapeutic roles, Autodock software was used for molecular docking verification. Results: 27 active ingredients, 340 potential targets related to active ingredients, 898 targets related to disease and 122 common targets were screened from Astragalus-Scorpion totally. The core targets of PPI network were JUN, AKT1, IL6, MAPK1 and RELA, while the core active ingredients in the active ingredient-target-disease network were quercetin, kaempferol, formononetin, 7-o-methylisomucronulatol and calycosin.762 GO entries and 154 pathways were obtained by enrichment analysis totally. The molecular docking results showed that quercetin binds to AKT1 and RELA, kaempferol to AKT1, and formononetin to RELA, all of which were stable. Conclusion: Quercetin, kaempferol and others in the Astragalus-Scorpion can regulate multiple signaling pathways such as PI3K-Akt signaling pathway by binding to targets such as AKT1 related to prostate cancer, inhibit the proliferation of tumor to play a role for prostate cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.