This competition 1 focus on Urban-Sense Segmentation based on the vehicle camera view. Class highly unbalanced Urban-Sense images dataset challenge the existing solutions and further studies. Deep Conventional neural network-based semantic segmentation methods such as encoder-decoder architecture and multi-scale and pyramidbased approaches become flexible solutions applicable to real-world applications. In this competition, we mainly review the literature and conduct experiments on transformerdriven methods especially SegFormer [26], to achieve an optimal trade-off between performance and efficiency. For example, SegFormer-B0 achieved 74.6% mIoU with the smallest FLOPS, 15.6G, and the largest model, SegFormer-B5 archived 80.2% mIoU. According to multiple factors, including individual case failure analysis, individual class performance, training pressure and efficiency estimation, the final candidate model for the competition is SegFormer-B2 with 50.6 GFLOPS and 78.5% mIoU evaluated on the testing set 2 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.