We propose an optimum pipeline and develop the hybrid representation to produce an effective and efficient visual terrain classification system. The bag of visual words (BOVW) framework has emerged as a promising approach and effective paradigm for visual terrain classification. The method includes four main steps: (1) feature extraction, (2) codebook generation, (3) feature coding, and (4) pooling and normalization. Recent researches have primarily focused on feature extraction in the development of new handcrafted descriptors that are specific to the visual terrain. However, the effects of other steps on visual terrain classification are still unknown. At the same time, fusion methods are often used to boost classification performance by exploring the complementarity of diverse features. We provide a comprehensive study of all steps in the BOVW framework and different fusion methods for visual terrain classification. Then, multiple approaches in each step and their effects are explored on the visual terrain dataset. Finally, the feature preprocessing technique, improved BOVW framework, and fusion method are used to construct an optimum pipeline for visual terrain classification. The hybrid representation developed by the optimum pipeline performs effectively and rapidly for visual terrain classification in the terrain dataset, outperforming those current methods. Furthermore, it is robust to diverse noises and illumination alterations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.