Built environments, occupants, and microbiomes constitute a system of ecosystems with extensive interactions that impact one another. Understanding the interactions between these systems is essential to develop strategies for effective management of the built environment and its inhabitants to enhance public health and well-being. Numerous studies have been conducted to characterize the microbiomes of the built environment. This review summarizes current progress in understanding the interactions between attributes of built environments and occupant behaviors that shape the structure and dynamics of indoor microbial communities. In addition, this review also discusses the challenges and future research needs in the field of microbiomes of the built environment that necessitate research beyond the basic characterization of microbiomes in order to gain an understanding of the causal mechanisms between the built environment, occupants, and microbiomes, which will provide a knowledge base for the development of transformative intervention strategies toward healthy built environments. The pressing need to control the transmission of SARS-CoV-2 in indoor environments highlights the urgency and significance of understanding the complex interactions between the built environment, occupants, and microbiomes, which is the focus of this review.
Enterobactin (Ent) is a highly conserved and important siderophore for the growth of many Gram-negative bacterial pathogens. Therefore, targeting Ent for developing innovative intervention strategies has attracted substantial research interest in recent years. Recently, we developed a novel Ent conjugate vaccine that has been demonstrated to be effective for controlling Gram-negative pathogens using both in vitro and in vivosystems. In particular, active immunization of chickens with the Ent conjugate vaccine elicited strong immune responses and significantly reduced intestinal colonization of Campylobacter jejuni, the leading foodborne bacterial pathogen. Given that hyperimmune egg yolk immunoglobulin Y (IgY) has been increasingly recognized as a promising and practical non-antibiotic approach for passive immune protection against pathogens in livestock, in this study, we assessed the efficacy of oral administration of broiler chickens with the anti-Ent hyperimmune egg yolk powder to control C. jejuni colonization in the intestine. However, supplementation of feed with 2% (w/w) of anti-Ent egg yolk powder failed to reduce C. jejuni colonization when compared to the control group. Consistent with this finding, the ELISA titers of the specific IgY in cecum, ileum, duodenum, gizzard, and serum contents were similar between the two groups throughout the trial. Chicken intestinal microbiota also did not change in response to the egg yolk powder treatment. Subsequently, to examine ex vivo stability of the egg yolk IgY, the chicken gizzard and duodenum contents from two independent sources were spiked with the egg yolk antibodies, incubated at 42 °C for different lengths of time, and subjected to ELISA analysis. The specific IgY titers were dramatically decreased in gizzard contents (up to 2048-fold) but were not changed in duodenum contents. Collectively, oral administration of broiler chickens with the anti-Ent egg yolk powder failed to confer protection against intestinal colonization of C. jejuni, which was due to instability of the IgY in gizzard contents as demonstrated by both in vivo and ex vivo evidence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.