This study detected the distribution of laminin during embryonic formation by immunofluorescence. To determine the possible function of laminin on developmental ability of in vitro fertilized embryos, the presumptive zygotes were divided and transferred to CR1aa medium supplemented with different concentrations (0 μg/ml, 5 μg/ml, 10 μg/ml and 20 μg/ml) of laminin. To explore the association with sperm-oocyte fusion, oocytes and/or sperm were pre-incubated with laminin or anti-β1 antibody before insemination. Laminin was absent in mature oocytes and could be detected first at the 8-cell stage and then displayed an increasing tendency. Adding 10 μg/ml laminin to the culture medium improved embryonic development including cleavage rate, blastocyst rate, total cell numbers in the blastocyst and cell numbers in the inner cell mass. Laminin inhibited sperm-oocyte fusion when incubated with oocytes and/or sperm before in vitro fertilization, and only integrin-β1 of sperm was involved in sperm-oocyte binding. Inhibition may be caused by blocking β1, but why laminin inhibits fertilization is still unknown. The results suggest that laminin plays an important role during embryonic formation and has a negative function in sperm-oocyte fusion, but improves embryonic development. However, only integrin-β1 is involved in sperm-oocyte binding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.