Higher-order sidebands in optomechanically induced transparency are discussed in a generic optomechanical system. We take account of nonlinear terms and give an effective method to deal with such problems. It is shown that, if a strong control field with frequency ω 1 and a weak probe field with frequency ω p are incident upon the optomechanical system, then there are output fields with frequencies ω 1 ± 2 generated, where = ω p − ω 1 . We analyze the amplitude of the output field ω 1 + 2 and look at how it varies with the control field and show that the amplitude of the second-order sideband can be controlled by the strong control field.
We analyze the features of the output field of a generic optomechanical system that is driven by a control field and a nanosecond driven pulse, and find a robust high-order sideband generation in optomechanical systems. The typical spectral structure, plateau and cutoff, confirms the nonperturbative nature of the effect, which is similar to high-order harmonic generation in atoms or molecules. Based on the phenomenon, we show that the carrier-envelope phase of laser pulses that contain huge numbers of cycles can cause profound effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.