In this study, we propose a direction-controlled nonlinear least squares estimation model that combines the penalty function and sequential quadratic programming. The least squares model is transformed into a sequential quadratic programming model, allowing for the iteration direction to be controlled. An ill-conditioned matrix is processed by our model; the least squares estimate, the ridge estimate, and the results are compared based on a combination of qualitative and quantitative analyses. For comparison, we use two equality indicators: estimated residual fluctuation of different methods and the deviation between estimated and true values. The root-mean-squared error and standard deviation are used for quantitative analysis. The results demonstrate that our proposed model has a smaller error than other methods. Our proposed model is thereby found to be effective and has high precision. It can obtain more precise results compared with other classical unwrapping algorithms, as shown by unwrapping using both simulated and real data from the Jining area in China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.