Salvia miltiorrhiza is a traditional Chinese herbal medicine, whose quality and yield are often affected by diseases and environmental stresses during its growing season. Salicylic acid (SA) plays a significant role in plants responding to biotic and abiotic stresses, but the involved regulatory factors and their signaling mechanisms are largely unknown. In order to identify the genes involved in SA signaling, the RNA sequencing (RNA-seq) strategy was employed to evaluate the transcriptional profiles in S. miltiorrhiza cell cultures. A total of 50,778 unigenes were assembled, in which 5,316 unigenes were differentially expressed among 0-, 2-, and 8-h SA induction. The up-regulated genes were mainly involved in stimulus response and multi-organism process. A core set of candidate novel genes coding SA signaling component proteins was identified. Many transcription factors (e.g., WRKY, bHLH and GRAS) and genes involved in hormone signal transduction were differentially expressed in response to SA induction. Detailed analysis revealed that genes associated with defense signaling, such as antioxidant system genes, cytochrome P450s and ATP-binding cassette transporters, were significantly overexpressed, which can be used as genetic tools to investigate disease resistance. Our transcriptome analysis will help understand SA signaling and its mechanism of defense systems in S. miltiorrhiza.
The spatio-temporal pattern of the global water resource has significantly changed with climate change and intensified human activities. The regional economy and ecological environment are highly affected by terrestrial water storage (TWS), especially in arid areas. To investigate the variation of TWS and its influencing factors under changing environments, the response relationships between TWS and changing environments (climate change and human activities) in Central Asia have been analyzed based on the Gravity Recovery and Climate Experiment (GRACE) data, Climatic Research Unit (CRU) climate data and Moderate Resolution Imaging Spectroradiometer (MODIS) remote sensing data products (MOD16A2, MOD13A3 and MCD12Q1) from 2003 to 2013. The slope and Pearson correlation analysis methods were used. Results indicate that: (1) TWS in about 77 % of the study area has decreased from 2003 to 2013. The total change volume of TWS is about 2915.6 × 10 8 m 3 . The areas of decreased TWS are mainly distributed in the middle of Central Asia, while the areas of increased TWS are concentrated in the middle-altitude regions of the Kazakhstan hills and Tarim Basin. (2) TWS in about 5.91% of areas, mainly distributed in the mountain and piedmont zones, is significantly positively correlated with precipitation, while only 3.78% of areas show significant correlation between TWS and temperature. If the response time was delayed by three months, there would be a very good correlation between temperature and TWS. (3) There is a significantly positive relationship between TWS and Normalized Difference Vegetation Index (NDVI) in 13.35% of the study area. (4) The area of significantly positive correlation between TWS and evapotranspiration is about 31.87%, mainly situated in mountainous areas and northwestern Kazakhstan. The reduction of regional TWS is related to precipitation more than evaporation. Increasing farmland area may explain why some areas show increasing precipitation and decreasing evapotranspiration. (5) The influences of land use on TWS are still not very clear. This study could provide scientific data useful for the estimation of changes in TWS with climate change and human activities. 986Journal of Geographical Sciences
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.