Single-molecule magnets (SMMs) with a large spin reversal barrier have been recognized to exhibit slow magnetic relaxation that can lead to a magnetic hysteresis loop. Synthesis of highly stable SMMs with both large energy barriers and significantly slow relaxation times is challenging. Here, we report two highly stable and neutral Dy(III) classical coordination compounds with pentagonal bipyramidal local geometry that exhibit SMM behavior. Weak intermolecular interactions in the undiluted single crystals are first observed for mononuclear lanthanide SMMs by micro-SQUID measurements. The investigation of magnetic relaxation reveals the thermally activated quantum tunneling of magnetization through the third excited Kramers doublet, owing to the increased axial magnetic anisotropy and weaker transverse magnetic anisotropy. As a result, pronounced magnetic hysteresis loops up to 14 K are observed, and the effective energy barrier (Ueff = 1025 K) for relaxation of magnetization reached a breakthrough among the SMMs.
The Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative is developing and validating a mechanistic‐based assessment of the proarrhythmic risk of drugs. CiPA proposes to assess a drug's effect on multiple ion channels and integrate the effects in a computer model of the human cardiomyocyte to predict proarrhythmic risk. Unanticipated or missed effects will be assessed with human stem cell‐derived cardiomyocytes and electrocardiogram (ECG) analysis in early phase I clinical trials. This article provides an overview of CiPA and the rationale and design of the CiPA phase I ECG validation clinical trial, which involves assessing an additional ECG biomarker (J‐Tpeak) for QT prolonging drugs. If successful, CiPA will 1) create a pathway for drugs with hERG block / QT prolongation to advance without intensive ECG monitoring in phase III trials if they have low proarrhythmic risk; and 2) enable updating drug labels to be more informative about proarrhythmic risk, not just QT prolongation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.