Introduction & ObjectiveMicrovesicles (MVs) derived from mesenchymal stem cells (MSCs) have been shown to promote angiogenesis. This study was aimed to shed a light on the mechanisms by analyzing the angiogenesis-promoting compositions of MSC-MVs. Also we try to figure out the impact of hypoxia on angiogenesis.MethodsMVs were isolated from the culture supernatants of MSCs under hypoxia/normoxia and serum-deprivation condition. The morphological features of MVs were revealed by an electron microscope and the origin of the MVs was identified by a bead-bound assay. An antibody array was used to analyze the expression of angiogenic cytokines from MVs and the parent MSCs as well. The major candidate factors were screened and the results were validated by immune blotting.ResultsMSC-MVs were around 80 nm in diameter. They expressed CD29, CD44, and CD73, but not CD31 and CD45. Antibody array showed that both MSCs and MVs expressed many angiogenesis-promoting biomolecules, including interleukin-6 (IL-6), basic fibroblast growth factors (bFGF), and recptor of urokinase-type plasminogen activator (UPAR). MSC-MVs contained angiogenin, vascular endothelial growth factor (VEGF), monocyte chemotactic protein-1 (MCP-1) and the receptor-2 for vascular endothelial growth factor at higher levels than the parent MSCs. Under hypoxic condition most cytokines were expressed in greater quantity than normoxic in MSCs while in MVs there was no significant difference between hypoxic and normoxic conditions except UPAR, Angiogenin, VEGF, IGF, Tie-2/TEK, and IL-6 which were higher in MVs under hypoxic conditions than those in normoxic condition.ConclusionUpon serum-deprivation condition, MSCs could secrete MVs that contain a variety of factors contributing to their angiogenesis-promoting function. And among them, Angiogenin, VEGF, MCP-1, VEGF R2 might be of greater importance than the other cytokines. Also UPAR, Angiogenin, VEGF, IGF, Tie-2/TEK, IL-6 might be responsible for hypoxia-augmented proangiogenic effects of MVs.
Aim: Microvesicles (MVs) are nanoscale membrane fragments released from virtually all cell types upon activation or apoptosis, and may contribute to the beneficial effects of stem cell therapy. In this study, we investigated the therapeutic effects of mesenchymal stem cell (MSC) derived MVs (MSC-MVs) on pulmonary artery hypertension (PAH) in rats. Methods: MSC-MVs were isolated from rat bone marrow MSCs that were cultured in a serum-free conditioned medium. Transmission electron microscopy (TEM), flow cytometry and nanoparticle tracking analysis (NTA) were used to characterize the MVs. Adult SD rats were injected with monocrotaline (50 mg/kg, sc) to induce PAH. Three weeks later, the rats were intravenously injected with MSCs, MSC-MVs or saline for 2 weeks. At the end of treatments, the hemodynamic parameters and pathological right ventricular and pulmonary arterial remodeling were analyzed in each group. Results: The MSC-MVs showed general morphologic characteristics of MVs and expressed annexin V and CD29 markers under TEM, and their size ranged from 40 to 300 nm. Intravenous injection of MSC-MVs or MSCs significantly ameliorated the mean pulmonary artery pressure (mPAP) and mean right ventricle pressure (mRVP) in PAH rats. Furthermore, intravenous injection of MSC-MVs or MSCs significantly decreased the right ventricle (RV) hypertrophy and pulmonary arteriole area index (AI) and thickness index (TI) in PAH rats. Conclusion: Intravenous injection of MSC-MVs or MSCs produces similar beneficial effects for treating PAH, and our results provide a basis for cell-free approach in stem cell therapy.
Recent experimental realizations of the lattice Schwinger model [Nature 587, 392 (2020) and Science 367, 1128Science 367, (2020] open a door for quantum simulation of elementary particles and their interactions using ultracold atoms, in which the matter and gauge fields are constrained by a local U(1) gauge invariance known as the Gauss's law. Stimulated by such exciting progress, we propose a new scenario in simulating the lattice Schwinger model in a spin-1 Bose-Einstein condensate. It is shown that our model naturally contains an interaction of the matter fields which respects the U(1) gauge symmetry but has no counterpart in the conventional Schwinger model. In addition to the Z2-ordered phase identified in the previous work, this additional interaction leads to a new Z3-ordered phase. We map out a rich phase diagram and identify that the continuous phase transitions from the disordered to the Z2-ordered and the Z3-ordered phases belong to the Ising and the 3-state Potts universality classes, respectively. Furthermore, the two ordered phases each possess a set of quantum scars which give rise to anomalous quantum dynamics when quenched to a special point in the phase diagram. Our proposal provides a novel platform for extracting emergent physics in cold-atom-based quantum simulators with gauge symmetries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.