Measuring parental care behaviour in the wild is central to the study of animal life-history trade-offs, but is often labour and time-intensive. More efficient machine learning-based video processing tools have recently emerged that allow parental nest visit rates to be measured using video cameras and computer processing. Here, we used open-source software to detect movement events from videos taken at the nest box of a wild passerine bird population. We show that visit numbers from our automatic data collection pipeline strongly correlate with human observations, and predicts an increase in fledglings and recruits in a brood. We further tested other annotation methods on a subset of videos, showing that a machine learning assisted annotation approach can largely increase the accuracy of the obtained measures and cut annotation time significantly compared to a cohort of undergraduate students. Since our automatic pipeline collected biological-meaningful data that would have taken approximately 800 days by human observers, we encourage more researchers to apply existing open-source tools to assist data collection in animal behaviour studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.