Aloe-emodin (1,8-dihydroxy-3-hydroxymethyl-anthraquinone), derived from some Chinese edible medicinal herbs, exerts a potential anticancer activity on various cancer cells, making it a drug candidate for cancer therapy. Yet, the role of aloe-emodin in pyroptosis, a new type of cell death, is uncharacterized. In this study, we explored the molecular mechanisms of aloe-emodin-triggered pyroptosis. Aloe-emodin inhibited proliferation and migration and triggered caspase-dependent cell death of HeLa cells in a dose-dependent manner. Aloe-emodin caused mitochondrial dysfunction and induced pyroptosis by activating the caspase-9/3/GSDME axis. Transcriptional analysis showed extensive changes in gene expressions in cellular pathways, including MAPK, p53, and PI3K-Akt pathways when treated with aloe-emodin. This study not only identified a novel role of aloe-emodin in pyroptotic cell death, but also performed a systematical genome-wide analysis of cellular pathways responding to aloe-emodin, providing a theoretical basis for applying anthraquinone derivatives in the treatment of GSDME-expressing cancers.
Aims Neointimal hyperplasia remains a major obstacle in vascular regeneration. Sca-1-positive progenitor cells residing within the vascular adventitia play a crucial role in the assemblage of vascular smooth muscle cell (VSMC) and the formation of the intimal lesion. However, the underlying mechanisms during vascular injury are still unknown. Methods and results Aneointimal formation rat model was prepared by carotid artery injury using 2F-Forgaty. After vascular injury, Meox1 expressions time-dependently increased during the neointima formation, with its levels concurrently increasing in the adventitia, media, and neointima. Meox1 was highly expressed in the adventitia on the first day after vascular injury compared to the expression levels in the media. Conversely, by the 14th day post-injury, Meox1 was extensively expressed more in the media and neointima than the adventitia. Analogous to the change of Meox1 in injured artery, Sca-1+ progenitor cells increased in the adventitia wall in a time-dependent manner and reached peak levels on the 7th day after injury. More importantly, this effect was abolished by Meox1 knockdown with shRNA. The enhanced expression of SDF-1α after vascular injury was associated with the markedly enhanced expression levels of Sca1+ progenitor cell, and these levels were relatively synchronously increased within neointima by the 7th day after vascular injury. These special effects were abolished by the knockdown of Meox1 with shRNA and inhibition of CXCR4 by its inhibitor, AMD3100. Finally, Meox1 concurrently regulated SDF-1α expressions in VSMC via activating CDC42, and CDC42 inhibition abolished these effects by its inhibitor, ZCL278. Also, Meox1 was involved in activation of the CXCR4 expression of Sca-1+ progenitor cells by CDC42. Conclusions Spatio-temporal model of Meox1 expression regulates theSca-1+progenitor cell migration during the formation of the neointima through the synergistic effect of Rho/CDC42 and SDF-1α/CXCR4.
We aimed to explore whether superfluous sympathetic activity affects myoblast differentiation, fusion, and myofiber types using a continuous single-dose isoprenaline exposure model in vitro and to further confirm the role of distinct NFATs in ISO-mediated effects. Compared with delivery of single and interval single, continuous single-dose ISO most obviously diminished myotube size while postponing myoblast differentiation/fusion in a time- and dose-dependent pattern, accompanied by an apparent decrease in nuclear NFATc1/c2 levels and a slight increase in nuclear NFATc3/c4 levels. Overexpression of NFATc1 or NFATc2, particularly NFATc1, markedly abolished the inhibitory effects of ISO on myoblast differentiation/fusion, myotube size and Myh7 expression, which was attributed to a remarkable increase in the nuclear NFATc1/c2 levels and a reduction in the nuclear NFATc4 levels and the associated increase in the numbers of MyoG and MEF2C positive nuclei within more than 3 nuclei myotubes, especially in MEF2C. Moreover, knockdown of NFATc3 by shRNA did not alter the inhibitory effect of ISO on myoblast differentiation/fusion or myotube size but partially recovered the expression of Myh7, which was related to the slightly increased nuclear levels of NFATc1/c2, MyoG and MEF2C. Knockdown of NFATc4 by shRNA prominently increased the number of MyHC +, MyoG or MEF2C + myoblast cells with 1 ~ 2 nuclei, causing fewer numbers and smaller myotube sizes. However, NFATc4 knockdown further deteriorated the effects of ISO on myoblast fusion and myotube size, with more than 5 nuclei and Myh1/2/4 expression, which was associated with a decrease in nuclear NFATc2/c3 levels. Therefore, ISO inhibited myoblast differentiation/fusion and myotube size through the NFAT-MyoG-MEF2C signaling pathway.
Backgorund:Neuromuscular diseases are a kind of nervous system diseases that have a high disability rate.Ezrin’ role in skeletal muscle has not been identified. This study aims to confirm the effect and mechanism of Ezrin on myoblast differentiation and fusion, myotube size, and myofiber type.Method:By using immunoassaying and western blot analyses, Ezrin, MyHC,MEF2c, MyoG, PKAα/β/γ, PKA reg Iα, PKA reg IIβand NFATc1-c4 were detected in myoblast cells treated with Ad-Ezrin or Ad-shEzrin. Real-time PCR were used to evaluate MyoD, Myf5, MyHC-I , MyHC-IIa/b and MyHC-IIx in myoblast cells. PKA inhibitor H-89 or PKAreg I activator N6-Bz-cAMP were added into medium to confirm their relationship between Ezrin and PKA during myoblast differentiation/fusion. In vitro, Ad-NFATc1/c2 or Ad-shNFATc3/c4 were respectively transfected into C2C12 cells, myoblast differentiation/fusion, myotube size and myofiber type were assessed by using immunostaining of MyHC, MEF2c and MyoG. In vivo, transfection of Ad-Ezrin into gastrocnemius and soleus muscles for 7 days, the numbers of MyHC-1 postivemyofibers were analyzed after immunostaining of MyHC-1.Results: Ezrin expression were time-dependently increased during myoblast differentiation/fusion. Knockdown of Ezrin by shRNA delayed myoblast differentiation and fusion in a time dose-dependent pattern, as shown by immunostaining of MyHC. Conversely, over-expression of Ezrin by adenovirus time- and dosage-dependently promoted myoblastdifferentiation/fusion, and muscle fiber specialization characterized by increased MyHC I and MyHCIIa/b. Forced expression of Ezrin did not alter PKA, and PKAreg II α levels, but altered the levels of PKAreg I α/β, Myf5 and MyoD, and leading to the accumulation of MyoG+/MEF2c+ nuclei. By contrast, Ezrin knockdown significantly decreased the PKA reg I/II ratio and MyoG+/MEF2c+ nuclei. The PKA inhibitor H-89 remarkably abolished the beneficial effect of over-expressingEzrin on the numbers of MyHC+ myotubes and MyoG+/MEF2c nuclei. These opposite changes mediated by knocking down Ezrin were almost eliminated by PKAreg I activator N6-Bz-cAMP. Furthermore, over-expression of NFATc2 or knockdown of NFATc4reversed the inhibitory effect of Ezrin knockdown on myoblast differentiation/fusion, resulting in the recovery of the numbers ofMyoG+/MEF2c+ nucleiin3-nuclei+myotubes. Meanwhile, overexpression of Ezrin specifically induced type I muscle fiber specialization, which was associated with increased levels of NFATc1/c2. Furthermore, in vivo transfection ofAd-Ezrin into gastrocnemius and soleus muscles increased the numbers of MyHC-1 postivemyofibers. By contrast, knockdown of NFATc4resulted in the recovery to normal levels of MyHC-2b in Ezrin-knockdown myoblast cells, attributingtoregainingMyoDand MEF2c expression. Conclusions: Ezrin trigger myoblast differentiation and fusion, myotube size, and alters muscle fiber specialization through PKA-NFAT-MyoD/MEF2C signalling pathway.
Salmonella Typhimurium creates an intracellular niche for its replication by utilizing a large cohort of effectors, including several that function to interfere with host ubiquitin signaling. Although the mechanism of action of many such effectors has been elucidated, how the interplay between the host ubiquitin network and bacterial virulence factors dictates the outcome of infection largely remains undefined. Here we found that the SPI-2 effector SseK3 inhibits SNARE pairing to promote the formation of Salmonella-induced filament by Arg-GlcNAcylation of SNARE proteins, including SNAP25, VAMP8, and Syntaxin. Further study reveals that host cells counteract the activity of SseK3 by inducing the expression of the ubiquitin E3 ligase TRIM32, which catalyzes K48-linked ubiquitination on SseK3 and targets its membrane-associated portion for degradation. Hence, TRIM32 antagonizes SNAP25 Arg-GlcNAcylation induced by SseK3 to restrict SIF biogenesis and Salmonella replication. Our study reveals a mechanism by which host cells inhibit bacterial replication by eliminating specific virulence factor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.