Exploiting the vast quantities of in-place oil in some of China's large sedimentary basins will require understanding and identifying where new technologies and techniques can be applied to maximize production. Exploration in the Ordos basin in north-central China has demonstrated that tight oil reservoirs, such as the Chang 7 formation, are widely distributed; however, they remain relatively underdeveloped. These reservoirs are buried below the conventional oil layers, differ from them by geological composition, and their thin pay zones and low permeability present development challenges.As part of a standard exploration and appraisal program, multiple vertical wells have been drilled to characterize the Chang 7 reservoir quality, and many were completed with only one hydraulic fracturing stage. Unfortunately, average hydrocarbon production was often low, and horizontal well completions with multiple transverse hydraulic fracturing treatments were required to obtain commercial flow rates. Part of the integrated workflow developed for the stimulation program requires the capture of reservoir, geological, and geomechanical properties for use in the design of the stages. The perforations were designed to allow for effective fracturing treatments across the lateral and were placed using the abrasive perforating technique. Additionally, one of these vertical wells was used for real-time microseismic fracturing monitoring to evaluate fracture geometry, fracture orientation, and azimuth.Real-time technology and an integrated workflow effectively increased the understanding of where, when, and how to deploy hydraulic fracturing treatments in the lateral section of the study well. This optimization has resulted in more than an 8-fold increase in production compared to that from vertical wells. Considered a breakthrough, this project has resulted in the planning for additional horizontal wells. Geology OverviewThe Ordos basin is the second largest onshore oil-and gas-producing basin in China, covering an area of 370,000 km 2 and including parts of the Shaanxi, Shanxi, and Gansu provinces and Ningxia Hui and Inner Mongolia autonomous regions. The basin is a large-scale asymmetric syncline, considered to be a stable Craton basin, and is bounded by the Huanghe fault in the north, Jinhuashan-Qishan Mountains in the south, the Zhouzishan-Luoshan Mountains to the west, and the Luliang Mountains to the east.The Yanchang formation (Fig. 1), deposited during the Triassic period, has a wide presence across the Ordos basin. It consists of the Chang 6, Chang 7, and Chang 8 reservoir sandstones, which are stacked sand and shale deposits. These layers are a result of comprehensive series of continental river, delta, and lake depositional systems; the Yanchang Group of the Upper Triassic is the primary oil-producing layer. These layers are typically low porosity and low permeability and can be characterized as a fine grain size with microthroats and poor physical properties. The formation is mainly composed of 38.9% quartz, 20.8% feldsp...
Jurassic Kerogen shale/carbonate reservoir in North Kuwait provides the same challenges as North American shales in addition to ones not yet comparable to any other analogue reservoir globally. It is the Kerogen's resource density; however, that makes this play so attractive. Like ‘conventional’ unconventional in the US and Canada this kerogen is believed to be a source rock and is on the order of micro-to nano-Darcy permeability. As such, industry learnings show that likely long horizontal laterals with multiple hydraulic fractures will be necessary to make commercial wells. Following this premise, the immediate objective is to establish clean inflow into wellbore as the previous attempts to appraise failed due to "creep" of particulate material and formation flowing into the wellbore. Achieving this milestone will confirm that this formation is capable of solids free inflow and will open a new era in unconventional in Kuwait. Planning for success, the secondary objective is to then upscale to full field development. The main uncertainties lie in both producibility and ‘frac-ability’, and certainly, these challenges are not trivial. A fully integrated testing program was applied to both better understand the rock mechanical properties and to land on an effective frac design. Scratch, unconfined stress, proppant embedment and fluid compatibility tests were conducted on full core samples for geo-mechanics to prepare a suite of strength measurements ahead of frac design and to custom-design the fracture treatment and "controlled" flowback programs to establish inflow from Kerogen without "creep". Unlike developed shale reservoirs, the Jurassic Kerogen tends to become unconsolidated when treated. The pre-frac geomechanics tests will be outlined in this paper with the primary objective of finding the most competent reservoir unit to select the limited perforation interval to frac through so that formation competency can be maintained. Previous attempts failed to maintain a competent rock matrix even only after pumping data-fracs. Acidizing treatments also turn the treated rock volume into sludgy material with no in-situ stability nor ability to deliver "clean inflow". A propped fracturing treatment with resin-coated bauxite was successfully placed in December 2019 in a vertical appraisal well perforated over 6 ft at 12 spf shot density. "Controlled" flowback carried out in January 2020 achieved the strategically critical "clean inflow" with reservoir fluids established to surface. Special proppant technologies provided by an industry leading manufacturer overcame the embedment effects and to control solids flowback. A properly designed choke schedule to balance unloading with a delicate enough drawdown to avoid formation failure was executed. Local oilfields relied on the vast reserves and produced easily from carbonate reservoirs that required only perforating or acid squeezes to easily meet or exceed high production expectations. This unconventional undertaking in Kuwait presents a real challenge as it is a complete departure from the ways of working yet it points towards a very high upside potential should the appraisal campaign can be completed effectively.
The North Kuwait Jurassic Gas (NKJG) reservoirs pose productivity challenges due to their geological heterogeneity, complex tectonic settings, high stress anisotropy, high pore pressure, and high bottom-hole temperature. Additionally, high natural fracture intensity in clustered areas play an important role in the wells hydrocarbon deliverability. These challenges are significant in field development starting from well design and stimulation up to production stages. The Gas Field Development Group (GFDG) are introducing for the first time in Kuwait new completion designs at high fracturing intensity; open-hole Multi Stage Completions (MSC), 4.5" Monobores and hybrid completions along with customized and efficient stimulation methods. This development strategy designed to overcome reservoir difficulties and enhance the well performance during initial testing and long-term production phases. At early stages of production, most of the wells were stimulated with simple matrix acidizing jobs and this method was sufficient to reach commercial production in conventional reservoirs. However, the reservoir depletion trend has negatively affected stimulation effectiveness and the wells performance in the recent years; hence, short and long-term solutions introduced to manage the sub-hydrostatic reservoir pressure. Our current focus is on the short-term stimulation solutions as they are relatively easier to apply compared to the long-term solutions that require additional resources, which are not available in the country. As a result, the stimulation methods, specifically the hydraulic fracturing treatments, increased production dramatically compared to previous years and it applied across North Kuwait Fields in conventional and unconventional reservoirs to reach the production targets of 2020-2021. The hydraulic fracturing treatment designs improved during the 2020-2021 fiscal year. The number of operations tripled compared to before and alternative chemical treatments with new fracturing designs implemented. In addition, these treatments executed across different well completions and reservoir properties. The objectives behind each fracturing treatment were different; for example: discovering new areas, re-stimulating under-performing wells, fracturing unconventional reservoirs, etc. Some promising wells did not flow as per expectation after matrix acidizing treatments despite the logs showing good reservoir quality similar to offset wells with good production. After re-stimulating with acid fracturing, the wells performed much better and one of them set a benchmark as the best producer amongst the offset wells. This paper evaluates the gaps in developing NKJG reservoirs, including fracturing treatments and highlights of the pros/cons for each operation, which in future supports the improvement of stimulation job designs. Moreover, it reveals the future requirements that control the operation success and how to reduce the well cleaning time post-fracturing in the event of low reservoir pressure. Finally, it describes how the outcome of the analyses directly assists reaching the production targets; since NKJG's production mainly depends on stimulation techniques.
Jurassic's kerogen shale-carbonate reservoir in North Kuwait is categorized as a source rock exhibiting micro- to Nano Darcy permeability and is Kuwait Oil Company's focus in recent years. Although the challenges are significant (formation creep, fracturing initiation, etc.), the efforts toward producing from unconventional reservoirs and applying experience from both USA and Canada in this field are ongoing. As a step toward development, the gas field development group selected a vertical pilot well to measure the inflow of hydrocarbon from a single fracture while minimizing formation creep (flowing of particulate material and formation into the wellbore that blocks the production). This step was required prior to drilling a long horizontal lateral wells and completing it with multiple hydraulic fractures to confirm commercial production. A comprehensive design process was executed with the full integration of operator and service company competencies to achieve the three main objectives: First, characterize the kerogen rock mechanics which allows selection of the most competent kerogen beds to prevent collapse of the hole during fracturing (creep effect) by conducting scratch, unconfined stress, proppant embedment, and fluid compatibility tests. Then, prepare a suit of strength measurements on full core samples to help in fracturing design and minimize creep effect. The second objective was to design and implement a robust proppant fracturing program that avoids the kerogen concerns after selecting the most competent reservoir unit and suitable proppant type. Third, perform controlled flowback to unload the well and attempt to establish clean inflow unlike previous attempts that failed to either suitably stimulate or prevent solids production (deliver clean inflow). After analyzing the lab test results, choosing the optimal fracturing design, and preparing the vertical well for proppant hydraulic fracturing, the treatment was performed. In December 2019, the hydraulic fracturing treatment with resin-coated bauxite proppant was successfully pumped through 6 ft of perforation interval and followed by a controlled flowback. Resin-coated bauxite proppant was specifically selected to overcome the creep and embedment effects during the fracture closure and flowback. Moreover, a properly designed choke schedule was implemented to balance unloading with a delicate enough drawdown to avoid formation failure. This paper discusses in detail the lab testing, evolution of fracturing design, treatment analysis, and the robust workflow that led to successfully achieving all main objectives, paving the way for long horizontal lateral wells. This unconventional undertaking in Kuwait presents a real challenge. It is a departure from traditional methods, yet it points toward a high upside potential should the appraisal campaign be completed effectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.