Although Mg alloy possesses high specific strength, low density, and good biocompatibility, poor corrosion resistance hinders its further applications. In the present study, an innovative protective layer against corrosion was prepared on the AZ31 Mg alloy via alkali pretreatment followed by vanillic acid treatment. The alkali pretreatment supplied –OH for the AZ31 Mg alloy surface to react with vanillic acid. The vanillic acid treatment played a crucial role in enhancing the corrosion resistance due to the excellent ability to act as a barrier and retard aqueous solution penetration, which effectively isolated the underlying Mg alloy from the corrosive environment. The corrosion current density of alkali and vanillic acid‐treated Mg alloy (AZ31V) almost showed two orders of magnitude lower values in comparison with that of the AZ31 Mg alloy, and the corrosion potential of AZ31V Mg alloy increased from −1.41 to −1.25 V. The immersion tests proved that there was no occurrence of severe corrosion. Hence, the alkali pretreatment and vanillic acid treatment may represent a promising method to improve the corrosion resistance of Mg alloy.
Fluoride conversion (MgF2) coating with facile preparation and good adhesion is promising to protect Mg alloy, but defects of pores in the coating lead to limited corrosion resistance. In this study, a compact and dense MgF2 coating was prepared by the combination of fluoride treatment and ultrasonic treatment. The ultrasonically treated MgF2 coating showed a compact and dense structure without pores at the frequency of 28 kHz. The chemical compositions of the coating were mainly composed of F and Mg elements. The corrosion potential of the ultrasonically treated Mg alloy shifted towards the noble direction in the electrochemical tests. The corrosion current density decreased due to the protectiveness of MgF2 coating without defects of pores or cracks. During immersion tests for 24 h, the ultrasonically treated Mg alloy exhibited the lowest H2 evolution (0.32 mL/cm2) and pH value (7.3), which confirmed the enhanced anti-corrosion ability of MgF2 coating. Hence, the ultrasonically treated fluoride coating had great potentials for their use in anti-corrosion applications of Mg alloy.
Although Al produces a solid metallurgical bonding with Mg alloy substrates, micropores or crevices in the Al coating can reduce the resistance of Mg alloy to corrosion. In this study, a composite coating with a defect-free microstructure was prepared on the AZ31 Mg alloy substrate by introducing Al 2 O 3 into the Al matrix via the method of laser cladding. On the one hand, Al 2 O 3 with thermal insulation had a low thermal expansion coefficient and was not very prone to voids during laser melting. On the other hand, Al 2 O 3 particles with a small size acted as the filler in the micropores or crevices. The Al/Al 2 O 3 coating exhibited a smaller current density (2.1 × 10 −6 A/cm 2 ) in comparison with those of bare substrate and Al coating (158.4 × 10 −6 and 3.1 × 10 −6 A/cm 2 , respectively), which was mainly ascribed to the pore-free microstructure and high resistance to corrosion of Al 2 O 3 phase. A favorable microhardness value of 95.3 HV was achieved for Al/Al 2 O 3 coating, approximately 1.8 times higher than that of Al coating (52.8 V), which was mainly ascribed to the dispersion hardening of Al 2 O 3 phase. Meanwhile, the Al/Al 2 O 3 coating significantly reduced wear volume from 2.8 mm 3 /m of Al coating to 0.4 mm 3 /m, showing great potential for weight reduction applications. K E Y W O R D S coating, corrosion, laser cladding, mechanical properties
Mg alloys are promising biomedical metal due to their natural degradability, good processability, and favorable mechanical properties. However, the poor corrosion resistance limits their further clinical applications. In this study, the combined strategies of surface chemical treatment and layer-by-layer self-assembly were used to prepare composite coatings on Mg alloys to improve the biocorrosion resistance. Specially, alkalized AZ91 Mg alloy generated chemical linkage with silane via Si–O–Mg covalent bond at the interface. Subsequently, Si–OH group from silane formed a crosslinked silane layer by Si–O–Si network. Further chemical assembly with graphene oxide (GO), lengthened the diffusion pathway of corrosive medium. The chemically assembled composite coatings could firmly bond to Mg alloy substrate, which persistently and effectively acted as compact barriers against corrosion propagation. Improved biocorrosion resistance of AZ91 Mg alloy with self-assembly composite coatings of silane/GO was subsequently confirmed by immersion tests. Besides, the Mg alloy exhibited good wear resistance due to outside layer of GO with a lubricant effect. Cell viability of higher than 75% had also been found for the alloy with self-assembly composite coatings, which showed good cytocompatibility.
Although Mg alloy attracts great attention for engineering applications because of high specific strength and low density, low corrosion resistance limits its extensive use. In this study, Mg–Al–Zn–Mn alloy was treated via a laser cladding process to generate a dense and compact laser cladding layer with solid metallurgical bonding on the substrate for improving corrosion resistance, effectively hindering the corrosion pervasion into Mg alloy. The corrosion current density declined from 103 μA/cm2 for Mg alloy to 13 μA/cm2 for the laser cladding layer in NaCl aqueous solution. Moreover, the laser cladding layer was slightly corroded in comparison with Mg alloy in NaCl aqueous solution. Besides, the microhardness of the cladding layer reached a mean value of 170.5 HV, 3.1 times of Mg alloy (56.8 HV) due to the in situ formation of hardening intermetallic phases. Wear resistance of laser cladding layer was also obviously improved. These results demonstrated that the laser cladding layer obviously enhanced anticorrosion property of Mg alloy for engineering applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.