This study investigates the microstructure, mechanical properties, and corrosion resistance of a friction-stir-welded joint of the hyper duplex stainless steel SAF2707. Friction stir welding (FSW) is performed at a tool rotation rate of 400 rpm and a welding speed of 100 mm/min. The microstructure of the joints is examined using scanning electron microscopy and X-ray diffraction. Tensile test and fractography are subsequently employed to evaluate the mechanical properties of the joints. Results show that the grain size of the stir zone (SZ) is smaller than that of the base metal (BM). Electron back-scattered diffraction analysis reveals that fine-equiaxed grains form in the SZ because of the dynamic recrystallization during the FSW. These grains become increasingly pronounced in the austenite phase. The tensile specimens consistently fail in the BM, implying that the welded joint is an overmatch to the BM. Moreover, the welded joints consist of finer grains and thus display higher tensile strength than their BMs. Potentiodynamic polarization curves and impedance spectroscopy both demonstrate that the corrosion resistance of the SZ is superior to that of the base material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.