Wind turbines may experience local weather perturbation, which is not taken into account by the commonly-used wind turbine simulation packages. Without this information, it is extremely challenging to evaluate the controller performance with regard to the effect of the variation of local atmospheric conditions. On the other side, it is too late and costly to wait until field test time. To fill this gap, in this paper, we develop a control-oriented turbine dynamic simulation framework to evaluate the controller performance considering the perturbation of local atmospheric conditions. This goal is achieved by integrating an internal wind turbine (IWT) model in the Weather Research and Forecasting (WRF) simulation tool. The proposed framework is implemented on a 5MW reference wind turbine, where the effects of the local atmospheric conditions are illustrated. The controller performance results are compared with those derived from the Fatigue, Aerodynamics, Structures,and Turbulence (FAST) simulator as a validation. Simulation results show that the proposed WRF-IWT model is able to capture the turbine dynamics and controller performance regarding the perturbation of the complex local atmospheric conditions. The proposed framework can be leveraged to assist in designing controllers, which is more applicable to real-world wind conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.