Uncontrolled hemorrhage leads to high death risk both in military and civilian trauma. Current hemostatic agents still have various limitations and side effects. In this study, natural diatom silica obtained from diatomite and diatom culture was purified and developed for hemorrhage control. To improve the biocompatibility and hemostatic performance of diatom silica, a series of chitosan-coated diatom (CS-diatom) was developed. The composition of CS-diatom prepared was optimized by in vitro hemocompatibility and blood coagulation evaluation for that prepared with 0.5%, 1%, 3%, and 5% chitosan. The results demonstrated that the CS-diatom prepared with 1% chitosan exhibited favorable biocompatibility (hemolysis ratio < 5%, no cytotoxicity to MEFs), great fluid absorbility (24.39 ± 1.53 times the weight of liquid), and desirable hemostasis effect (351 ± 14.73 s at 5 mg/mL, 248 ± 32.42s at 10 mg/mL). Further blood coagulation mechanism study indicated that CS-diatom could provide an ideal interface to induce erythrocyte absorption and aggregation, along with activating the intrinsic coagulation pathway and thus accelerated blood coagulation. Benefitting from the multiple hemostatic performances, CS-diatom showed the shortest clotting time (98.34 ± 26.54 s) and lowest blood loss (0.31 ± 0.11 g) in rat-tail amputation model compare to diatomite and diatom as well as gauze and commercial QuikClot zeolite. The results evidenced that the CS-diatom was a safe and effective hemostatic agent and provided a new understanding of nonsynthetic mesoporous materials for hemorrhage control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.