The mid-infrared heating of interfacial water with different initial temperatures is studied using nonequilibrium molecular dynamics simulation. It is found that under the irradiation of a pulse at 3360-3380 cm −1 the two-dimensional water monolayer on a hydrophilic surface at a lower initial temperature acquires a much larger temperature jump. The mechanism beneath this counterintuitive phenomenon is the enhanced transition efficiency of the asymmetric OH stretching vibration due to the specific oriented configuration of water molecules at lower initial temperatures. The understanding of the anomalous phenomenon clarifies the sensitivity of the interfacial properties of water molecules to the temperature.
The mid-infrared heating of interfacial water with different initial temperatures is studied using non-equilibrium molecular dynamics simulation. It is found that under the irradiation of a pulse at 3360−3380 cm −1 , the two-dimensional water monolayer on a hydrophilic surface at a lower initial temperature acquires a much larger temperature jump. The mechanism beneath this counterintuitive phenomenon is the enhanced transition efficiency of the asymmetric OH stretching vibration due to the specific oriented configuration of water molecules at lower initial temperatures. The understanding of the anomalous phenomenon clarifies the sensitivity of the interfacial properties of water molecules to the temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.