The affective appraisal of odors is known to depend on their intensity (I), familiarity (F), detection threshold (T), and on the baseline affective state of the observer. However, the exact nature of these relations is still largely unknown. We therefore performed an observer experiment in which participants (N = 52) smelled 40 different odors (varying widely in hedonic valence) and reported the intensity, familiarity and their affective appraisal (valence and arousal: V and A) for each odor. Also, we measured the baseline affective state (valence and arousal: BV and BA) and odor detection threshold of the participants. Analyzing the results for pleasant and unpleasant odors separately, we obtained two models through network analysis. Several relations that have previously been reported in the literature also emerge in both models (the relations between F and I, F and V, I and A; I and V, BV and T). However, there are also relations that do not emerge (between BA and V, BV and I, and T and I) or that appear with a different polarity (the relation between F and A for pleasant odors). Intensity (I) has the largest impact on the affective appraisal of unpleasant odors, while F significantly contributes to the appraisal of pleasant odors. T is only affected by BV and has no effect on other variables. This study is a first step towards an integral study of the affective appraisal of odors through network analysis. Future studies should also include other factors that are known to influence odor appraisal, such as age, gender, personality, and culture.
A new method for personal identification based on geometric invariant moment is presented. Firstly image processing including binary processing and segment of hand silhouette are used, and then translation and scale normalization algorithms are implemented on the palms and fingers image. After that the geometric moment characteristics of image are extract, and then the feature vectors composed of seven moment invariants is obtained. At last, support vector is achieved by training 100 images data in images database, 15 testing image were selected randomly to verify validity and feasibility of algorithms. Experimental results indicate that the accuracy of hand shape identification is 93%. The new method of extracting hand shape geometric moment as characteristic matrix is easy to realize with characteristic of high utility and accuracy, and solve the problem of translation, rotation and scaling during the image acquisition process without positioning aids, and especially for development and application of the portable embedded devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.