Nonlinear metasurfaces offer new paradigm for boosting optical effect beyond limitations of conventional materials. In this work, we present an alternative way to produce pronounced third-harmonic generation (THG) based on nonlinear field resonances rather than linear field enhancement, which is a typical strategy for achieving a strong nonlinear response. By designing and studying a nonlinear plasmonic-graphene metasurface at terahertz regime with hybrid-guided modes and bound states in the continuum modes, it is found that a THG with a narrow bandwidth can be observed, thanks to the strong resonance generated between a weak THG field and these modes. Such strong nonlinear field resonance greatly enhances the photon-photon interactions, thus resulting in a large effective nonlinear coefficient of the whole system. This finding provides new opportunity for studying nonlinear optical metasurfaces.
Correction for ‘Direct chemical vapor deposition synthesis of large area single-layer brominated graphene’ by Maria Hasan et al., RSC Adv., 2019, 9, 13527–13532.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.