Medical imaging modalities, such as magnetic resonance imaging (MRI) and computerized tomography (CT), have allowed medical researchers and clinicians to examine the structural and functional features of the human body, thereby assisting the clinical diagnosis. However, due to the highly controlled imaging environment, the imaging process often creates noise, which seriously affects the analysis of the medical images. In this study, a medical imaging enhancement algorithm is presented for ankle joint talar osteochondral injury. The gradient operator is used to transform the image into the gradient domain, and fuzzy entropy is employed to replace the gradient to determine the diffusion coefficient of the gradient field. The differential operator is used to discretize the image, and a partial differential enhancement model is constructed to achieve image detail enhancement. Three objective evaluation indexes, namely, signal-to-noise ratio (SNR), information entropy (IE), and edge protection index (EPI), were employed to evaluate the image enhancement capability of the proposed algorithm. Experimental results show that the algorithm can better suppress noise while enhancing image details. Compared with the original image, the histogram of the transformed image is more uniform and flat and the gray level is clearer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.