Brusatol, a quassinoid isolated from the fruit of Bruceajavanica, has recently been shown to inhibit nuclear factor erythroid 2-related factor 2 (Nrf2) via Keap1-dependent ubiquitination and proteasomal degradation or protein synthesis. Nrf2 is a transcription factor that regulates the cellular defense response. Most studies have focused on the effects of Nrf2 in tumor development. Here, the critical roles of Nrf2 in mouse early embryonic development were investigated. We found that brusatol treatment at the zygotic stage prevented the early embryo development. Most embryos stayed at the two-cell stage after 5 days of culture (P < 0.05). This effect was associated with the cell cycle arrest, as the mRNA level of CDK1 and cyclin B decreased at the two-cell stage after brusatol treatment. The embryo development potency was partially rescued by the injection of Nrf2 CRISPR activation plasmid. Thus, brusatol inhibited early embryo development by affecting Nrf2-related cell cycle transition from G2 to M phase that is dependent on cyclin B-CDK1 complex.
The present study was to investigate if a completely chemically defined medium (PZM-4) could support the early development of porcine embryos derived from parthenogenetic activation (PA) and cloning (somatic cell nuclear transfer, SCNT), and to lay the foundation for determining the physiological roles of certain supplements in this medium. Porcine embryos derived from PA and SCNT were cultured in media: PZM-3 (a chemically semi-defined medium), PZM-4 (a fully defined medium), and PZM-5 (an undefined medium). Early embryo development was observed. We found that the three medium groups (PZM-3, PZM-4 and PZM-5) exhibited no significant differences in cleavage rates of PA embryos (p > 0.05), while the blastocyst rate in PZM-3 was significantly higher than in PZM-4 and PZM-5 (78.9% vs. 36.0% and 52.3%) (p < 0.05). Moreover, total cell number per blastocyst in PZM-3 was clearly higher than in PZM-5 but similar to that in PZM-4. As for SCNT embryos, no significant differences were observed for the cleavage rates or the blastocyst rates among the three groups (p > 0.05). However, total cell number per blastocyst in PZM-3 was notably higher than in PZM-5, but was similar to that in PZM-4. In conclusion, our results suggested that the completely chemically defined medium PZM-4 can be used to efficiently support the early development of porcine PA and SCNT embryos.
Blastomere biopsy is an essential technique in preimplantation genetic diagnosis (PGD), a screening test that can detect genetic abnormalities of embryos before their transfer into uterus. Our results showed that the weights of fetuses derived from biopsied embryos were lower than that of non-biopsied counterparts at E12.5, E15.5, and E18.5. The ratio of fetal/placental (F/P) weights in the biopsied group was significantly lower than that in the non-biopsied group at E18.5. At E18.5, the mRNAs for selected glucose transporters, system A amino acid transporters, system L amino acid transporters, and imprinted genes were downregulated in the placentae of biopsied group, and the GLUT1 and CAT3 protein levels were decreased too. More apoptotic cells were detected by TUNEL in the placentae of biopsied group. Placentae from biopsied embryos exhibited lower levels of SOD and GSH. Furthermore, the concentration of MDA increased in the placentae from biopsied group. The levels of IL1B, IL6, and TNFA also significantly increased in the placentae of biopsied group. This study suggested that placental function may be sensitive to blastomere biopsy procedures, and placental oxidative stress and inflammation associated with blastomere biopsy may be critical factors of abnormal placental function and further influence the fetal development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.