Hurricane Sandy (2012) experienced an unusual westward turning and made landfall in New Jersey after its northward movement over the Atlantic Ocean. The landfall caused severe casualties and great economic losses. The westward turning took place in the midlatitude Atlantic where the climatological mean wind is eastward. The cause of this unusual westward track is investigated through both observational analysis and model simulations. The observational analysis indicates that the hurricane steering flow was primarily controlled by atmospheric intraseasonal oscillation (ISO), which was characterized by a pair of anticyclonic and cyclonic circulation systems. The anticyclone to the north was part of a global wave train forced by convection over the tropical Indian Ocean through Rossby wave energy dispersion, and the cyclone to the south originated from the tropical Atlantic through northward propagation. Hindcast experiments using a global coupled model show that the model is able to predict the observed circulation pattern as well as the westward steering flow 6 days prior to Sandy’s landfall. Sensitivity experiments with different initial dates confirm the important role of the ISO in establishing the westward steering flow in the midlatitude Atlantic. Thus the successful numerical model experiments suggest a potential for extended-range dynamical tropical cyclone track predictions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.