Technological overcoming of the potential threat of a decrease in the quality of radiation monolithic structures of protective shields, which are under constant influence of ionizing radiation (due to radiation embitterment) is one of the most urgent tasks of ensuring protection against radiation exposure. The aim of the work is to carry out a comparative analysis of the quality (in terms of radiation protection) of monolithic and granular protective screens. In contrast to monolithic prototypes, granular conglomeration has clear advantages, which are to avoid destructive processes of radiation embitterment, simplify replacement and handling (compaction and compaction), and disposal. It is important to emphasize that the protective properties of granular screens hardly differ from their monolithic counterparts, and the economic advantages of the corresponding technologies are significant at the same time. The material provided is actually the formulation of the problem on the theoretical substantiation of the advantages of using granular materials (in comparison with monolithic ones) in radiation protection technologies based on analysis as physical mechanisms and form factors of interaction neutron and gamma radiation with a substance with a developed morphology on a micro-scale.
One of the most significant problems that belong to effective use of granular materials GM (for example, in the construction, pharmacological, chemical, agricultural and some other industries, as well as in the technologies of screening against internal radiation) is the difficulty of ensuring their maximum compaction in order to increase the efficiency of their practical application. In this way, we study of the properties of binary granular systems, the dynamics of their compaction and the impact on this process of the ratio of component sizes and partial parameters in order to provide an innovative step in the development of appropriate technologies. To this end, we propose to use the apparatus of Kirkwood-Buff theory in combination with model equations of state, like Carnahan-Starling, together with relevant phenomenological information, which obtained from direct observations. We report theoretically the fundamental possibility of increasing the degree and speed of packaging and at first describe substantiate empirical data in the full range of values of the volume (or molar) fraction.
The actuality of the problem of contamination of objects by macro-molecular compounds is a growing problem today (especially given the terrible consequences of the pandemic). In fact, macromolecular complexes are mostly located on the surface layers of the surface covered with fine dust. Therefore, the development of technology for the removal of macromolecular components is actually a problem of fine (so we will call it) dust removal. This problem cannot be effectively solved by traditional mechanical removal methods alone, as contaminated objects have a rather complex, not even Euclidian, surface morphology. Therefore, it is important to develop effective technologies based on the use of properties of special configurations of external inhomogeneous electric field and removable components by means of a specially configured inhomogeneous electric field. The paper analyzes modern technologies of fine dust cleaning both mechanically and with the help of external electrical fields under the particular conditions and creation of levitation and electrophoretic motion. It has been found exact solutions of the model, which indicate in favor of the theoretical validity of decontamination technology using electric field with manipulative properties; the conditions of the most effective use of levitation-electrophoretic technology in the tasks of dust cleaning and decontamination, including decontamination of the surface-distributed macromolecular contaminants such as coronaviruses. Index Terms dust pollution dust cleaning levitation electrophoresis macromolecular pollution coronavirus
The problem is that to date there is no general theory of the granular state of matter in a closed form. However, there are some well-developed models that use, for example, the representation of a continuous environment. Typical bulk material is a large conglomeration of micro-mechanical particles of different sizes and shapes that interact with each other and the walls contain containers by mainly repulsive forces in direct mechanical contact (by nature it is forces of electromagnetic origin – dry and viscous friction forces, as well as traction).In the proposed work to study the pressure in a multiparticle micro-mechanical system, a model of a lattice gas in a gravitational field is considered. Analysis of the determination of free energy and entropy allowed us to establish the corresponding equilibrium density profile, which is described by a Fermi-type function. The Fermi profile in the form of a density field was used to find the vertical hydrostatic pressure for which the analytical expression was obtained. Hydrostatic pressure was different from the known relations derived from the theory of condensed matter. The obtained results are confirmed by experimental observations, which indicate a complex, anisotropic significantly different from the known from the theory of condensed matter distribution of even vertical pressure in large conglomerations of discrete micro-mechanical particles. Which really repeats the Fermi distribution. The obtained results stimulate the revision of typical ratios of hydrostatics of continuous media, such as Pascal's laws. Torricelli, Archimedes and Bernoulli in the case of discrete micro-mechanical (granular) systems. The conclusions of the work can be significant in the design and evaluation of operating parameters of storage, release and transportation of bulk cargo, which consist of discrete micro-mechanical conglomerations with different degrees of compaction and compaction.
Вступ. Одна з традиційно актуальних проблем теоретичного базису виробництва і технологій - це опис, параметризація та прогнозування властивостей суміші залежно від параметрів компонентів. Однією із найсуттєвіших проблем,які заважають ефективному використанню гранульованих матеріалів, наприклад у будівельній промисловості, є складність забезпечення їх максимального ущільнення для підвищення ефективності практичного застосування.Проблематика. Розуміння принципів, завдяки яким формуються основні параметри багатокомпонентних систем спирається на базові моделі, які дозволяють параметризувати дані вимірів в термінах величин, що характеризують окремі чисті компоненти (reference data). Побудова таких моделей є складною задачею та вимагає феноменологічної інформації із декількох альтернативних джерел.Мета. Спираючись на апарат теорії Кірквуда-Баффа, модельні рівняння стану та данні аналізу експериментальних даних з вивчення макроскопічних параметрів бідисперсної мікромеханічної суміші побудувати теоретичний алгоритм опису та параметризації їх фізико-механічних характеристик в термінах зв’язків макроскопічних та парціальних властивостей залежно від об’ємної (або молярної) фракції одного з компонентів.Матеріали й методи. Моделі гранульованих бікомпонентних сумішей; теорія Кірквуда-Баффа; модельні рівняння стану для модельних сумішей твердих кульок типу Карнахана-Старлінга; феноменологічна інформація про динаміку ущільнення простих гранульованих сумішей.Результати. За допомогою теорії Кірквуда-Баффа, модельних співвідношень для сумішей твердих кульок, із використанням феноменологічних даних про характер ущільнення гранульованих матеріалів, розроблено алгоритм для опису макроскопічних властивостей бінарних гранульованих систем зокрема компактизації.Висновки. Отримані дані підтверджують наявність впливу мультидисперсності на динаміку ущільнення тобто, на можливість суміші під дією зовнішніх впливів прогнозовано змінювати локальну структуру впакування та її параметри.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.