The global stability of dynamical systems and networks is still challenging to study. We developed a landscape and flux framework to explore the global stability. The potential landscape is directly linked to the steady state probability distribution of the non-equilibrium dynamical systems which can be used to study the global stability. The steady state probability flux together with the landscape gradient determines the dynamics of the system. The non-zero probability flux implies the breaking down of the detailed balance which is a quantitative signature of the systems being in non-equilibrium states. We investigated the dynamics of several systems from monostability to limit cycle and explored the microscopic origin of the probability flux. We discovered that the origin of the probability flux is due to the non-equilibrium conditions on the concentrations resulting energy input acting like non-equilibrium pump or battery to the system. Another interesting behavior we uncovered is that the probabilistic flux is closely related to the steady state deterministic chemical flux. For the monostable model of the kinetic cycle, the analytical expression of the probabilistic flux is directly related to the deterministic flux, and the later is directly generated by the chemical potential difference from the adenosine triphosphate (ATP) hydrolysis. For the limit cycle of the reversible Schnakenberg model, we also show that the probabilistic flux is correlated to the chemical driving force, as well as the deterministic effective flux. Furthermore, we study the phase coherence of the stochastic oscillation against the energy pump, and argue that larger non-equilibrium pump results faster flux and higher coherence. This leads to higher robustness of the biological oscillations. We also uncovered how fluctuations influence the coherence of the oscillations in two steps: (1) The mild fluctuations influence the coherence of the system mainly through the probability flux while maintaining the regular landscape topography. (2) The larger fluctuations lead to flat landscape and the complete loss of the stability of the whole system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.