A variety of detailed data about geological topics and geoscience knowledge are buried in the geoscience literature and rarely used. Named entity recognition (NER) provides both opportunities and challenges to leverage this wealth of data in the geoscience literature for data analysis and further information extraction. Existing NER models and techniques are mainly based on rule‐based and supervised approaches, and developing such systems requires a costly manual effort. In this paper, we first design a generic stepwise framework for domain‐specific NER. Following this framework, domain‐specific entities and domain‐general words are collected and selected as seed terms. Normalization and grouping processes are then applied to these seed terms for further analysis. A random extraction algorithm based on a unigram language model is used to generate a large‐scale training data set consisting of probabilistically labeled pseudosentences. Each generated sentence is then used as input to the self‐training and learning algorithm. Experimental results on two constructed data sets demonstrate that the proposed model effectively recognizes and identifies geological named entities.
Resolution is a comprehensive reflection and evaluation index for the visual quality of remote sensing images. Super-resolution processing has been widely applied for extracting information from remote sensing images. Recently, deep learning methods have found increasing application in the super-resolution processing of remote sensing images. However, issues such as blurry object edges and existing artifacts persist. To overcome these issues, this study proposes an improved generative adversarial network with self-attention and texture enhancement (TE-SAGAN) for remote sensing super-resolution images. We first designed an improved generator based on the residual dense block with a self-attention mechanism and weight normalization. The generator gains the feature extraction capability and enhances the training model stability to improve edge contour and texture. Subsequently, a joint loss, which is a combination of L1-norm, perceptual, and texture losses, is designed to optimize the training process and remove artifacts. The L1-norm loss is designed to ensure the consistency of low-frequency pixels; perceptual loss is used to entrench medium- and high-frequency details; and texture loss provides the local features for the super-resolution process. The results of experiments using a publicly available dataset (UC Merced Land Use dataset) and our dataset show that the proposed TE-SAGAN yields clear edges and textures in the super-resolution reconstruction of remote sensing images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.