Bumble bee queens undergo a number of biological changes as they transition through adult emergence, mating, overwintering, foraging, and colony initiation including egg laying. Therefore, they represent an important system to understand the link between physiological, behavioral, and environmental changes and host-associated microbiota. It is plausible that the bumble bee queen gut bacteria play a role in shaping the ability of the queen to survive environmental extremes and reproduce, due to long-established coevolutionary relationships between the host and microbiome members.
The Anthropocene period is characterised by a general demographic shift from rural communities to urban centres that transform the predominantly wild global landscape into mostly cultivated land and cities. In addition to climate change, there are increased uncertainties in the water balance and these feedbacks cannot be modelled accurately due to scarce or incomplete in situ data. In African catchments with limited current and historical climate data, precise modelling of potential runoff regimes is difficult, but a growing number of model applications indicate that useful simulations are feasible. In this study, we used the new generation of soil and water assessment tool (SWAT) dubbed SWAT+ to assess the viability of using high resolution gridded data as an alternative to station observations to investigate surface runoff response to continuous land use change and future climate change. Simultaneously, under two representative concentration pathways (RCP4.5 and RCP8.5), six regional climate models (RCMs) from the Coordinated Regional Climate Downscaling Experiment Program (CORDEX) and their ensemble were evaluated for model skill and systematic biases and the best performing model was selected. The gridded data predicted streamflow accurately with a Nash–Sutcliffe efficiency greater than 0.89 in both calibration and validation phases. The analysis results show that further conversion of grasslands and forests to agriculture and urban areas doubled the runoff depth between 1984 and 2016. Climate projections predict a decline in March–May rainfall and an increase in the October–December season. Mean temperatures are expected to rise by about 1.3–1.5 °C under RCP4.5 and about 2.6–3.5 °C under RCP8.5 by 2100. Compared to the 2010–2016 period, simulated surface runoff response to climate change showed a decline under RCP4.5 and an increase under RCP8.5. In contrast, the combine effects of land use change and climate change simulated a steady increase in surface runoff under both scenarios. This suggests that the land use influence on the surface runoff response is more significant than that of climate change. The study results highlight the reliability of gridded data as an alternative to instrumental measurements in limited or missing data cases. More weight should be given to improving land management practices to counter the imminent increase in the surface runoff to avoid an increase in non-point source pollution, erosion, and flooding in the urban watersheds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.