Generally, an optical vortex lattice (OVL) is generated via the superposition of two specific vortex beams. Thus far, OVL has been successfully employed to trap atoms via the dark cores. The topological charge (TC) on each optical vortex (OV) in the lattice is only ±1. Consequently, the orbital angular momentum (OAM) on the lattice is ignored. To expand the potential applications, it is necessary to rediscover and exploit OAM. Here we propose a novel high-order OVL (HO-OVL) that combines the phase multiplication and the arbitrary mode-controllable techniques. TC on each OV in the lattice is up to 51, which generates sufficient OAM to manipulate microparticles. Thereafter, the entire lattice can be modulated to desirable arbitrary modes. Finally, yeast cells are trapped and rotated by the proposed HO-OVL. To the best of our knowledge, this is the first realization of the complex motion of microparticles via OVL. Thus, this work successfully exploits OAM on OVL, thereby revealing potential applications in particle manipulation and optical tweezers.
We propose an orientation-selective elliptic optical vortex array (OS-EOVA). Using multicoordinate (namely, polar, Cartesian, and elliptic) transformations, three kinds of operations applied on optical vortex elements (including location, rotation, and stretching) were executed to obtain the desired orientation in the observed plane. Then, exploiting the reverse design technique, the above-mentioned operations were mapped onto the initial execution plane via Fourier transform. Based on this, 1D and 2D OS-EOVAs were generated experimentally and the existence of optical vortices was verified. Specific OS-EOVAs were designed, possessing antenna array orientation as well as radial and azimuthal orientation. Compared to existing OVAs, the OS-EOVA provides an additional modulated dimension, i.e., orientation. This technique will open up some potential applications, such as complex manipulation of multiparticle systems and fabrication of micromaterials with orientation.
Structured light with more extended degrees of freedom (DoFs) and in higher dimensions is increasingly gaining traction and leading to breakthroughs such as super-resolution imaging, larger-capacity communication, and ultraprecise optical trapping or tweezers. More DoFs for manipulating an object can access more maneuvers and radically increase maneuvering precision, which is of significance in biology and related microscopic detection. However, manipulating particles beyond three-dimensional (3D) spatial manipulation by using current all-optical tweezers technology remains difficult. To overcome this limitation, we theoretically and experimentally present six-dimensional (6D) structured optical tweezers based on tailoring structured light emulating rigid-body mechanics. Our method facilitates the evaluation of the methodology of rigid-body mechanics to synthesize six independent DoFs in a structured optical trapping system, akin to six-axis rigid-body manipulation, including surge, sway, heave, roll, pitch, and yaw. In contrast to previous 3D optical tweezers, our 6D structured optical tweezers significantly improved the flexibility of the path design of complex trajectories, thereby laying the foundation for next-generation functional optical manipulation, assembly, and micromechanics.
We designed novel cycloid-structured optical tweezers based on a modified cycloid and holographic shaping techniques. The optical tweezers realize all the dynamic characteristics of the trapped particles, including start, stop, and variable-velocity motions along versatile trajectories. The superiority of the tweezers is experimentally verified using polystyrene micro-sphere manipulation. This work provides a novel platform for more complex manipulations of particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.