A persistent enigma is the rarity of polyploidy in animals, compared to its prevalence in plants. Although animal polyploids are thought to experience deleterious genomic chaos during initial polyploidization and subsequent rediploidization processes, this hypothesis has not been tested. We provide an improved reference-quality de novo genome for allotetraploid goldfish whose origin dates to ~15 million years ago. Comprehensive analyses identify changes in subgenomic evolution from asymmetrical oscillation in goldfish and common carp to diverse stabilization and balanced gene expression during continuous rediploidization. The homoeologs are coexpressed in most pathways, and their expression dominance shifts temporally during embryogenesis. Homoeolog expression correlates negatively with alternation of DNA methylation. The results show that allotetraploid cyprinids have a unique strategy for balancing subgenomic stabilization and diversification. Rediploidization process in these fishes provides intriguing insights into genome evolution and function in allopolyploid vertebrates.
The knowledge of understanding the molecular traits of the sterile triploid fish is sparse. Herein, we analyzed the microRNA (miRNA) alternations in the testes of the sterile triploid fish produced by crossing the tetraploid fish with the diploid fish, compared with those of tetraploids and diploids used as the controls. A total of 136, 134, and 142 conserved miRNAs and 105, 112, and 119 novel miRNAs were identified in the diploid, triploid, and tetraploid fish, respectively. The genes targeted by the differentially expressed miRNAs were identified and were enriched in the GO term cell surface receptor signaling pathway, cellular process, G-protein coupled receptor signaling pathway, and metabolic process. KEGG pathway enrichment was also assessed to evaluate the target genes with differentially expressed miRNAs and these genes were enriched in four pathways (synthesis and degradation of ketone bodies, pentose and glucuronate interconversions, cyanoamino acid metabolic process, and ascorbate and aldarate metabolism). Nine differentially expressed miRNAs were verified by quantitative real-time PCR analysis (qPCR). The upregulated miRNAs in triploids, including miR-101a, miR-199-5p, miR-214, miR-222, and miR-193a, showed the same results with high-throughput sequencing. Among the selected downregulated miRNAs, miR-7b and miR-153b had significantly lower expression levels in triploids. Dnah3 and Tekt1 genes targeted by miR-199-5p showed lower expression in triploids by qPCR. These verified differentially expressed miRNAs may participate in testicular development and sperm activity by targeting functional genes, which were identified with differential expression in the triploid. This evidence provides insights into the epigenetic regulatory mechanisms of sterility in triploid cyprinids.
Distant hybridization refers to the cross between two different species or higher-ranking taxa. It is very significant if the new lineages with genetic variation, fertile ability, and improved characteristics can be established through distant hybridization. However, reproductive barriers are key limitations that must be overcome to establish fertile lineages derived from distant hybridization. In the present review, we discussed how distant hybridization is an important way to form new species by overcoming reproductive barriers and summarized effective measures to overcome reproductive barriers in order to create fertile lineages of fish distant hybridization. In addition, we described the utilization of the fish lineages derived from distant hybridization. Finally, we discussed the relationship between distant hybridization and Mendel’s laws, which generally apply to the inbred hybridization. We aim to provide a comprehensive reference for the establishment of fertile fish lineages by overcoming reproductive barriers and to emphasize the significance of fish distant hybridization in the fields of evolutionary biology, reproductive biology, and genetic breeding.
BackgroundBleeker’s yellow tail (Xenocypris davidi Bleeker, YT) and topmouth culter (Culter alburnus Basilewsky, TC) are both famous and important economic freshwater fish in China. YT, a kind of omnivorous fish, has strong resistance. TC, a kind of carnivorous fish, has high-quality meat but poor resistance. Distant hybridization can integrate the advantages of both parents. There has been no previous report regarding hybrid fish derived from female YT × male TC. It is expected that hybridization of these two kinds of fish will result in F1 hybrids with improved characteristics, such as faster growth rate, stronger resistance, and high-quality meat, which are of great significance in fish genetic breeding.ResultsIn this study, we investigated the main biological characteristics of diploid hybrid fish derived from female YT × male TC. The hybrids had an intermediate number of upper lateral line scales between those for YT and TC. The hybrids were diploids with 48 chromosomes and had the same karyotype formula as their parents. The hybrids generated variations in 5S rDNA (designated class IV: 212 bp) and lost specific 5S rDNA derived from the maternal parent (designated class II: 221 bp), which might be related to hybridization. In terms of reproductive traits, all the tested female hybrids exhibited normal gonadal development, and the two-year-old F1 females produced mature eggs. However, all the tested testes of the male hybrids could not produce mature sperm. It is possible that the hybrid lineage will be established by back-crossing the fertile female hybrids and their parents.ConclusionsObtaining a fertile female hybrid fish made the creation of a new type of fish possible, which was significant in fish genetic breeding.
activin β A and β B from diploid and allotriploid crucian carp were cloned.The differential expression of activin β A and β B genes in female allotriploid and diploid red crucian carp Carassius auratus red var. were studied and found to be expressed in all the tested tissues; particularly, the expression of activin β A and β B was elevated in the ovaries of allotriploids and differential expression in pituitaries during the nonbreeding season and the breeding season period. The immunohistochemistry indicated that the abnormal triploid ovaries were dominated by small oogonium-like cells with dense signals and that the elevated expression of activin β A and β B in the ovaries of allotriploids may be related to allotriploid sterility. K E Y W O R D Sactivin β A , activin β B , allotriploid, Carassius auratus red. var., differential expression, sterility Activin is a member of the transforming growth factor-β (TGF-β) family of growth and differentiation factors (Vale et al., 1988). Activin was first isolated from gonadal fluids (Mathews, 1994) and commonly consists of three types: activin A, activin B and activin AB. Homodimerisation of the β A subunit generates activin A and the β B subunit generates activin B. The β A and β B subunits can also heterodimerise and form activin AB. In addition to the β A and β B subunits, β C and β E have been identified in mammals (Fang et al., 1996;Hotten et al., 1995) and a β D subunit has been described in the Africa clawed frog Xenopus laevis (Oda et al., 1995), but the β A and β B subunits have been researched more frequently (Woodruff, 1998).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.