[1] We have developed a method to compute the total energy transmitted by tsunami waves, to the case where the earthquake source is unknown, by using deep-ocean pressure measurements and numerical models (tsunami source functions). Based on the first wave recorded at the two closest tsunameters (Deep-Ocean Assessment and Reporting of Tsunamis (DART)), our analysis suggests that the March 11, 2011 Tohoku-Oki tsunami generated off Japan originated from a 300-400 km long and 100 km wide area, and the total propagated energy is 3 Â 10 15 J (with 6% uncertainty). Measurements from 30 tsunameters and 32 coastal tide stations show excellent agreement with the forecasts obtained in real time. Our study indicates that the propagated energy and the source location are the most important source characteristics for predicting tsunami impacts. Interactions of tsunami waves with seafloor topography delay and redirect the energy flux, posing hazards from delayed and amplified waves with long duration. Seafloor topography also gives its spectral imprint to tsunami waves. Travel time forecast errors are path-specific and correlated to the major wave scatterers in the Pacific. Numerical dissipation in the propagation modeling highlights the need of high-resolution inundation models for accurate coastal predictions. On the other hand, it also can be used to account for physical dissipation to achieve efficiency. Our results provide guidelines for the earliest reliable tsunami forecast, warnings of long duration tsunami waves signals and enhancement of the experimental tsunami forecast system. We apply the method to quantify the energy of 15 past tsunamis, independently from earthquake magnitudes. The small tsunami to seismic radiation energy ratios, and their variability (0.01-0.8%), reinforce the importance of using deep-ocean tsunami data, the direct measures of tsunamis, for estimates of tsunami energy and accurate forecasting.
At 23:41 UTC on 15 August 2007, an offshore earthquake of magnitude 8.0 severely damaged central Peru and generated a tsunami. Severe shaking by the earthquake collapsed buildings throughout the region and caused 514 fatalities. The tsunami resulted in three casualties and a representative maximum runup height of ∼7 m in the near field. The first real‐time tsunami data available came from a deep‐ocean tsunami detection buoy within 1 hour of tsunami generation. These tsunami data were used to produce initial experimental forecasts within 2 hours of tsunami generation. The far‐field forecasts indicated that the tsunami would not flood any of the 14 U.S. communities. Comparison with real‐time tide gage data showed very accurate forecasts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.