A reprocessable, acid-degradable epoxy-imine network polymer was fabricated based on an epoxide of vanillin, and it was used to prepare a composite film with structural color.
Shape‐memory photonic crystals (SMPCs) transform the nanoscale deformation of copolymers into structural color through an undifferentiated response to stimuli; however, activatable selective responses are extremely rare. Herein, activatable dual confined shape‐memory effects (CSMEs) derived from the remodeling of the interchain hydrogen bonds (H‐bonds) in cold‐programmable SMPCs are revealed. The first level is the water‐triggered reconstruction of interchain H‐bonds, which can activate/lock the collapsed skeleton, showing shape recovery/retention in response to ethanol vapor. The second level is the pressure‐induced reorganization of interchain H‐bonds that results in the recovered skeleton being locked even when exposed to ethanol vapor or water, while the background porous structure can switch between collapse and recovery. Dual CSMEs result from the Laplace pressure difference and the binding effect of interchain H‐bonds in the skeleton according to insights of swelling, in situ deformation tracking, multidimensional infrared spectra, and water wetting/evaporation simulations. The signal interference, source code extraction, and color enhancement of structurally colored patterns can be implemented using CSMEs. This work opens up a new method for fabricating activatable responsive structural color and contributes to the expansion of nanophotonic technology in water printing, erasable watermarks, signal amplifiers, and information coding.
Non-spherical colloidal particles, as basic building blocks, exhibit special capability in constructing novel materials. In this work, red blood cell (RBC)-like, anisotropic particles were synthesized and the self-assembly of the RBC-like particles was then carried out at the air-water interface. Subsequently, multilayer 3D structured colloidal crystals were also fabricated. The as-prepared colloidal crystal film displays beautiful Bragg diffraction, which can be used to construct a photonic crystal. After that, the self-assembly of binary colloidal particles was explored to design well-patterned binary colloidal crystals. This facile self-assembly approach to prepare colloidal crystals may extend to other anisotropic building blocks, providing guidance for the fabrication of more complex and flexible materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.