Path to another drug against COVID-19
The rapid development of vaccines has been crucial in battling the ongoing COVID-19 pandemic. However, access challenges remain, breakthrough infections occur, and emerging variants present increased risk. Developing antiviral therapeutics is therefore a high priority for the treatment of COVID-19. Some drug candidates in clinical trials act against the viral RNA-dependent RNA polymerase, but there are other viral enzymes that have been considered good targets for inhibition by drugs. Owen
et al
. report the discovery and characterization of a drug against the main protease involved in the cleavage of polyproteins involved in viral replication. The drug, PF-07321332, can be administered orally, has good selectivity and safety profiles, and protects against infection in a mouse model. In a phase 1 clinical trial, the drug reached concentrations expected to inhibit the virus based on in vitro studies. It also inhibited other coronaviruses, including severe acute respiratory syndrome coronavirus 1 and Middle East respiratory syndrome coronavirus, and could be in the armory against future viral threats. —VV
The worldwide outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become an established global pandemic. Alongside vaccines, antiviral therapeutics are an important part of the healthcare response to counter the ongoing threat presented by COVID-19. Here, we report the discovery and characterization of PF-07321332, an orally bioavailable SARS-CoV-2 main protease inhibitor with in vitro pan-human coronavirus antiviral activity, and excellent off-target selectivity and in vivo safety profiles. PF-07321332 has demonstrated oral activity in a mouse-adapted SARS-CoV-2 model and has achieved oral plasma concentrations exceeding the in vitro antiviral cell potency, in a phase I clinical trial in healthy human participants.
Clinical Trial Registration ID #: NCT04756531
Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a key role in regulating the levels of plasma low-density lipoprotein cholesterol (LDL-C). Here, we demonstrate that the compound PF-06446846 inhibits translation of PCSK9 by inducing the ribosome to stall around codon 34, mediated by the sequence of the nascent chain within the exit tunnel. We further show that PF-06446846 reduces plasma PCSK9 and total cholesterol levels in rats following oral dosing. Using ribosome profiling, we demonstrate that PF-06446846 is highly selective for the inhibition of PCSK9 translation. The mechanism of action employed by PF-06446846 reveals a previously unexpected tunability of the human ribosome that allows small molecules to specifically block translation of individual transcripts.
A general and facile one-pot amination procedure for the synthesis of 2-aminopyridines from the corresponding pyridine-N-oxides is presented as a mild alternative to S(N)Ar chemistry. A variety of amines and heterocyclic-N-oxides participate effectively in this transformation which uses the phosphonium salt, PyBroP, as a means of substrate activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.