Seismic impedance inversion is a vital way of geological interpretation and reservoir investigation from a geophysical perspective. However, it is inevitably an ill-posed problem due to the noise or the band-limited characteristic of seismic data. Artificial neural network have been used to solve nonlinear inverse problems in recent years. This research obtained an acoustic impedance profile by feeding seismic profile and background impedance into a well-trained self-attention U-Net. The U-Net got convergence by appropriate iteration, and the output predicted the impedance profiles in the test. To value the quality of predicted profiles from different perspectives, e.g., correlation, regression, and similarity, we used four kinds of indexes. At the same time, our results were predicted by conventional methods (e.g., deconvolution with recursive inversion, and TV regularization) and a 1D neural network was calculated in contrast. Self-attention U-Net showed to be robust to noise and does not require prior knowledge. Furthermore, spatial continuity is also better than deconvolution, regularization, and 1D deep learning methods in contrast. The U-Net in this paper is a type of full convolutional neural network, so there are no limits to the shape of the input. Based on this, a large impedance profile can be predicted by U-Net, which is trained by a patchy training dataset. In addition, this paper applied the proposed method to the field data obtained by the Ceduna survey without any label. The predictions prove that this well-trained network could be generalized from synthetic data to field data.
An accurate seismic facies analysis (SFA) can provide insight into the subsurface sedimentary facies and has guiding significance for geological exploration. Many machine learning algorithms, including unsupervised, supervised, and deep learning algorithms, have been developed successfully for SFA over the past decades. However, SFA and facies classification are still challenging tasks due to the complex characteristics of geological and seismic data. A multiattribute SOM-K-means clustering algorithm, which implements a two-stage clustering by using multiple geological attributes, is proposed and applied for SFA. The proposed algorithm can effectively extract complementary features from the multiple attribute volumes and comprehensively use the different attributes to improve the recognition ability of seismic facies. Experimental results show that the proposed algorithm improves clustering accuracy and can be used as an effective and powerful tool for SFA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.