Hypoxia, an outstanding characteristic of various solid tumors, has been considered a critical factor of aggressive tumor phenotypes, poor clinical prognosis, and increased expression of the multidrug-resistant gene. Therefore, it is critical to develop a drug delivery system to enhance the delivery effect of the antitumor drug in the hypoxic tumor. We constructed two types of tumor targeting micelles based on chitosan and evaluated their properties in targeting hypoxic tumors. Chitosan-based micelles consisted of a hydrophobic group octyl group, a hydrophilic polyethylene glycol, tumor targeting ligands glucosamine or folic acid, and a transmembrane peptide 9-d-arginine. The molecular structure, morphology, size distribution, zeta potential, and biosafety of two micelles were characterized. Oil-soluble CdSe quantum dots were used as a fluorescent probe to evaluate the hypoxic tumor cell targeting properties of the micelles. Moreover, HepG2 human hepatocellular carcinoma cells and HeLa human cervical carcinoma cells were used as in vitro models. We demonstrated that, under hypoxic conditions, two chitosan micelles showed better targeting ability to HepG2 and HeLa cells, which enhanced the effect of antitumor drugs by specifically targeting transport in hypoxic tumors. Therefore, chitosan micelles may be a potential drug delivery system that can be used to deliver antitumor drugs to hypoxic tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.