Recently released hourly particular matter (PM:PM2.5 and PM10) and gaseous pollutants (SO2, NO2, CO, and O3) data observed in Qingdao, Hangzhou, and Xiamen from 2015 to 2019 were utilized to reveal the current situation of air pollution over eastern coastal China. The PM pollution situation over the three metropolises ameliorated during studied period with the concentrations decreasing about 20–30%. Gas pollutants, excepting SO2, generally exhibit no evident reduction tendencies, and a more rigorous control standard on gaseous pollutants is neededEven for the year 2018 with low pollution levels among the study period, these levels (<10% of PM2.5, <6% of PM10, and <15% of O3) surpass the Grade II of the Chinese Ambient Air Quality Standard (CAAQS) over these metropolises of eastern coast China. No matter in which year, both SO2 and CO concentrations are always below the Grade-II standards. According to the comparative analysis of PM2.5/PM10 and PM2.5/CO during episode days and non-episode days, the formation of secondary aerosols associated with stagnant weather systems play an important role in the pollutant accumulation as haze episodes occurred. The stronger seasonal variations and higher magnitude occur in Qingdao and Hangzhou, while weaker seasonal variations and lower magnitudes occur in Xiamen. In Qingdao and Hangzhou, PM, NO2, SO2, and CO show relatively high levels in the cold wintertime and low levels in summer, whereas O3 shows a completely opposite pattern. Xiamen exhibits high levels of all air pollutants except O3 in spring due to its subtropical marine monsoon climate with mild winters. According to the back trajectory hierarchical clustering and concentration weighted trajectory (CWT) analysis, the regional transmission from adjacent cities has a significant impact on the atmospheric pollutant concentrations under the control of the prejudiced winds. Thus, besides local emission reduction, strengthening regional environmental cooperation and implementing joint prevention are effective measures to mitigate air pollution in the eastern coastal areas of China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.