Cuplok scaffolds are widely used to form temporary supporting structures when constructing bridges and other structures all over the world. The safety and stability of cuplok scaffolds are important issues during construction. Cuplok scaffolds are subjected to various types of vibrations, which may loosen the cuplok connection, negatively impacting the stability of the structure and even leading to severe accidents. In this paper, the authors propose a time reversal (TR) method to monitor the looseness status of the cuplok connection by using stress wavebased active sensing. Lead zirconate titanate (PZT), a commonly used piezoceramic material with a strong piezoelectric effect, is employed. In the proposed approach, PZT patches are used as sensors and actuators to monitor the cuplok joint looseness. One PZT patch is bonded to the vertical bar and two PZT patches are bonded to the cross bars of the cuplok scaffold. The PZT patch on the vertical bar is used as an actuator to generate a stress wave and the other two PZT patches are used as sensors to detect the propagated waves through the cuplok connection, the looseness of which will directly impact the stress wave propagation. The TR method is used to analyse the transmitted signal between the PZT patches through the cuplok connection. By comparing the peak values of the TR focused signal, it can be found that the peak value increases as the tightness of the cuplok connection increases. Therefore, the peak value of the TR focused signal can be used to monitor the tightness of the cuplok connection. In addition, the experimental results demonstrated that the TR method is superior to the energy method in consistency, sensitivity and anti-noise properties.
Steel strands are widely used in cable stay or suspension bridges. The safety and stability of steel strands are important issues during their operation period. Steel strand is subjected to various types of prestress loss which loosens the wedge anchorage system, negatively impacting the stability of the structure and even leading to severe accidents. In this paper, the authors propose a time reversal (TR) method to monitor the looseness status of the wedge anchorage system by using stress wave based active sensing. As a commonly used piezoceramic material, Lead Zirconate Titanate (PZT) with a strong piezoelectric effect is employed. In the proposed active sensing approach, PZT patches are used as sensors and actuators to monitor the steel strand looseness status. One PZT patch is bonded to the steel strand, one PZT patch is bonded to the wedges, and another PZT patch is bonded to the barrel. There are three different interfaces of the wedge anchorage system to monitor the steel strand looseness status. In the first method, the PZT patch on the steel strand is used as an actuator to generate a stress wave and the PZT patch on the wedge is used as a sensor to detect the propagated waves through the wedge anchorage system. In the second method, the PZT patch on the steel strand is used as an actuator to generate a stress wave and the PZT patch on the barrel is used as a sensor to detect the propagated waves through the wedge anchorage system. In the third method, the PZT patch on the wedges is used as an actuator to generate a stress wave and the PZT patches on the barrel is used as a sensor to detect the propagated waves through the wedge anchorage system, of which the looseness will directly impact the stress wave propagation. The TR method is utilized to analyze the transmitted signal between PZT patches through the wedge anchorage system. Compared with the peak values of the TR focused signals, it can be found that the peak value increases as the wedge anchorage system tightness increases. Therefore, the peak value of the TR focused signal can be used to monitor the tightness of the steel strand. In addition, the experimental results demonstrated the time reversal method’s reliability, sensitivity and anti-noise property.
The cuplock scaffolds are widely used as a temporary facility in the bridge and other constructions. The looseness of cuplock scaffold connection plays a significant role in the stability of the structure. Contemporary structural health monitoring method is reviewed in this paper at first, and then we proposed wavelet packet analysis based method. In order to detect the looseness of cuplock connection, three stress PZTs and three shear PZTs used as transducers are mounted onto vertical bar and cross bars of cuplok scaffold. Wavelet packet analysis is applied to analyze the transmitted signal energy between two PZTs through cuplok connection. Experimental results show that shear PZT has better performance than stress PZT to be used as actuator and sensor for the wavelet packet analysis based structural health monitoring. Besides, a sensor looseness index matrix (SLIM) is derived to indicate the looseness of the cuplock connection. The experimental results show that looseness index increases as the connection gets loose.
A steel strand is widely used in long span prestressed concrete bridges. The safety and stability of a steel strand are important issues during its operation period. A steel strand is usually subjected to various types of prestress loss which loosens the anchorage system, negatively impacting the stability of the structure and even leading to severe accidents. In this paper, the authors propose a wavelet packet analysis method to monitor the looseness of the wedge anchorage system by using stress wave-based active sensing. As a commonly used piezoceramic material, lead zirconate titanate (PZT) is employed with a strong piezoelectric effect. In the proposed active sensing approach, PZT patches are used as sensors and actuators to monitor the steel strand looseness. The anchorage system consists of the steel strand, wedges and barrel, which forms two different direct contact surfaces to monitor the tension force. PZT patches are pasted on the surface of each steel strand, corresponding wedge and barrel, respectively. Different combinations of PZTs are formed to monitor the anchoring state of the steel strand according to the position of the PZT patches. In this monitoring method of two contact surfaces, one PZT patch is used as an actuator to generate a stress wave and the other corresponding PZT patch is used as a sensor to detect the propagated waves through the wedge anchorage system. The function of these two PZTs were exchanged with the changing of transmission direction. The wavelet packet analysis method is utilized to analyze the transmitted signal between PZT patches through the steel strand anchorage system. Compared with the wavelet packet energy of received signals under different PZT combinations, it could be found that the wavelet packet energy increased with the increasing of anchorage system tightness. Therefore, the wavelet packet energy of received signal could be used to monitor the tightness of the steel strand during operation. Additionally, the wavelet packet energy of the received signals are different when the same PZT combination exchanges the energy transfer direction. With the comparison on the received signals of different combinations of PZTs, the optimal energy transfer path corresponding to different contact surfaces of the steel strand could be determined and the optimal experimental results are achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.