A stable and tunable parity-time (PT) symmetric single-longitudinal-mode fiber laser using a nonreciprocal Sagnac loop is proposed, which is experimentally and numerically demonstrated. The nonreciprocal Sagnac loop only including a 3-dB optical coupler (OC) and a polarization controller (PC) is incorporated into a fiber ring cavity, in which nonreciprocal light transmission between the frequencydegenerate clockwise (CW) and counterclockwise (CCW) resonator modes is induced to suppress multiplelongitudinal-mode oscillation of the laser. The two light paths along the CW and CCW directions in the Sagnac loop are respectively defined as the gain and loss loop of the PT-symmetric laser, due to a controllable birefringence induced by the PC. By controlling the polarization states of the two light waves, the PT symmetry is broken when the gain coefficient is larger than the coupling coefficient, single-mode lasing is thus achieved. Experimental results show that the optical signal to noise ratio (OSNR) of the single-mode lasing at 1550 nm is 43.0 dB, proving the great superiority of PT symmetry for lasing mode selection. By tuning an optical tunable band-pass filter incorporated into the fiber cavity, the wavelength of output singlemode lasing varies from 1530 to 1560 nm, and their 3-dB Lorentzian linewidth varies within a range from 529 to 687 Hz. During a 30-min observation period, the variations of wavelength drift and OSNR of the single-mode lasing are less than 6 pm and 2.42 dB, respectively. The advantages of the proposed scheme are obvious, which include simple structure, low cost, simple operation, and good stability.
We propose and experimentally demonstrate a stable and tunable PT-symmetric single-longitudinal-mode (SLM) fiber ring laser using a nonreciprocal Sagnac loop. To suppress multiple-longitudinal-mode oscillation, the Sagnac loop only including a 3-dB optical coupler (OC) and a polarization controller (PC) is incorporated into the fiber ring cavity, which induces nonreciprocal light transmission and coupling between the frequency-degenerate clockwise (CW) and counterclockwise (CCW) resonator modes. The two light paths traveling along the CW and CCW directions in the Sagnac loop are defined as the gain loop and loss loop, respectively. By adjusting the polarization states of the two light waves, when the gain and loss coefficients are larger than the coupling coefficient, the PT symmetry is broken, singlemode lasing is thus generated in the fiber laser cavity.
A tunable single-longitudinal-mode (SLM) narrow linewidth Brillouin fiber laser based on parity-time (PT) symmetry is proposed and experimentally demonstrated. In the proposed scheme, the dual selecting-mode mechanism is employed to achieve the SLM operation. The first, a narrow-band gain curve induced by stimulated Brillouin scattering (SBS) can be acted as a filter for selecting mode preliminary in the fiber ring cavity. The second, a PT-symmetric structure is formed by using a Sagnac loop, in which by adjusting a single polarization controller, the PT symmetry can be broken, resulting in the SLM oscillation. The SBS effect can be further beneficial to the linewidth narrowing. Using the proposed scheme, the SLM lasing with an optical signal to noise ratio of 50.1 dB and an ultra-narrow linewidth of 300 Hz at 1547.90 nm is obtained. Compared with the original linewidth of pump laser, the linewidth-reduction ratio can be up to 680 times. The available wavelength ranges from 1528.4 to 1563.4 nm, covering 35 nm. The key advantage of the proposed laser is that by constructing a simple Sagnac loop, the SLM selection based on PT symmetry and linewidth narrowing benefiting from SBS effect are accomplished simultaneously. Moreover, it is worth noting that the wavelength tunability is virtually unrestricted, only depending on the pump wavelength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.