Using nonequilibrium molecular dynamics simulations and nonequilibrium Green's function method, we investigate the thermoelectric properties of a series of zigzag and chiral carbon nanotubes which exhibit interesting diameter and chirality dependence. Our calculated results indicate that these carbon nanotubes could have higher ZT values at appropriate carrier concentration and operating temperature. Moreover, their thermoelectric performance can be significantly enhanced via isotope substitution, isoelectronic impurities, and hydrogen adsorption. It is thus reasonable to expect that carbon nanotubes may be promising candidates for high-performance thermoelectric materials.
Theoretical predictions of light beam interactions with jet engine exhaust are of importance for optimization of various optical systems, including LIDARs, imagers and communication links operating in the vicinity of aircrafts and marine vessels. Here we extend the analysis previously carried out for coherent laser beams propagating in jet engine exhaust, to the broad class of Gaussian Schell-Model (GSM) beams, being capable of treating any degree of coherence in addition to size and radius of curvature. The analytical formulas for the spectral density (SD) and the spectral degree of coherence (DOC) of the GSM beam are obtained and analyzed on passage through a typical jet engine exhaust region. It is shown that for sources with high coherence, the transverse profiles of the SD and the DOC of the GSM beams gradually transition from initially circular to elliptical shape upon propagation at very short ranges. However, such transition is suppressed for sources with lower coherence and disappears in the incoherent source limit, implying that the GSM source with low source coherence is an excellent tool for mitigation of the jet engine exhaust-induced anisotropy of turbulence. The physical interpretation and the illustration are included.
In a recent publication [Opt. Lett.42, 1512 (2017)OPLEDP0146-959210.1364/OL.42.001512], a novel class of partially coherent sources with circular coherence was introduced. In this paper, we examine the propagation behavior of the spectral density and the spectral degree of spatial coherence of a beam generated by such a source in free space and in oceanic turbulent media. It is found that the beam exhibits self-focusing, which is dependent on the initial coherence and the parameters of oceanic turbulence. The self-focusing phenomenon disappears when the initial coherence is high enough or the oceanic turbulence is strong. The area of high coherence appears in the center and along two diagonal lines. With increasing turbulence, the coherence area reduces gradually along one diagonal line and is retained along the other one. A physical interpretation of the self-focusing phenomenon is presented, and potential applications in optical underwater communication and beam shaping are considered.
A new class of partially coherent pulses of Schell type with cosine-Gaussian temporal degree of coherence is introduced. Such waves are termed the Cosine-Gaussian Schell-model (CGSM) pulses. The analytic expression for the temporal mutual coherence function of the CGSM pulse in dispersive media is derived and used to study the evolution of its intensity distribution and its temporal degree of coherence. Further, the numerical calculations are performed in order to show the dependence of the intensity profile and the temporal degree of coherence of the CGSM pulse on the incident pulse duration, the initial temporal coherence length, the order-parameter n and the dispersion of the medium. The most important feature of the novel pulsed wave is its ability to split into two pulses on passage in a dispersive medium at some critical propagation distance. Such critical distance and the subsequent evolution of the split pulses are shown to depend on the source parameters and on the properties of the medium in which the pulse travels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.