The development of heterogeneous metallaphotocatalysis is of great interest for sustainable organic synthesis. The rational design and controllable preparation of well-defined (site-isolated) metal/photo bifunctional solid catalysts to meet such goal remains a critical challenge. Herein, we demonstrate the incorporation of privileged homogeneous bipyridyl-based Ni-catalysts into highly ordered and crystalline potassium poly(heptazine imide) (K-PHI). A variety of PHI-supported cationic bipyridyl-based Ni-catalysts (LnNi-PHI) have been prepared and fully characterized by various techniques including NMR, ICP-OES, XPS, HAADF-STEM and XAS. The LnNi-PHI catalysts exhibit exceptional chemical stability and recyclability in diverse C−P, C−S, C−O and C−N cross-coupling reactions. The proximity and cooperativity effects in LnNi-PHI significantly enhances the photo/Ni dual catalytic activity, thus resulting in low catalyst loadings and high turnover numbers.
Ordered mesoporous siliceous material has been identified as one of the key elements of the catalysis concept. Here we report an efficient Friedel-Crafts reaction of indoles with isatins catalyzed by PWA/MCM-41, which got the di(indolyl)indolin-2-ones derivatives with high yield. Moreover, the catalysts were characterized by XRD and SEM/EDS, the EDS spectrum indicated that the catalyst used in this reaction also contains tungsten, and the proposed mechanism for the synthesis of 3,3-di(indolyl)indolin-2-ones was also discussed. Finally, the catalyst can be reused repeatedly for several times without obvious loss of activity.
A novel aza-Piancatelli rearrangement
triggered cascade reaction
has been developed by utilizing methyl furylacrylates as a new type
of functionalized furanoxonium ion precursor, permitting rapid and
flexible construction of diverse cyclopenta[b]pyrrolidinone
derivatives. The unprecedented and highly efficient bicyclic γ-lactam
product formation is originated from an unusual retro-aza-Piancatelli rearrangement of the major cis-fused
multifunctionalized cyclopentenone to the minor trans-fused one followed by a lactamization reaction.
A fully heterogeneous metallaphotocatalytic C−C crosscoupling of aryl/vinyl halides with alkyl/allyltrifluoroborates has been developed by employing integrated bipyridyl-Ni(II)-carbon nitride as a stable and recyclable bifunctional catalyst. This visible-light-mediated heterogeneous protocol allows for the sustainable synthesis of diverse valuable diarylmethanes and allylarenes in high efficiency.
The development of heterogeneous metallaphotocatalysis is of great interest for sustainable organic synthesis. The rational design and controllable preparation of well-defined (site-isolated) metal/photo bifunctional solid catalysts to meet such goals remain a critical challenge. Herein, we demonstrate the incorporation of privileged homogeneous bipyridyl-based Ni-catalysts into highly ordered and crystalline potassium poly(heptazine imide) (K-PHI). A variety of PHI-supported cationic bipyridyl-based Ni catalysts (LnNi-PHI) have been prepared and fully characterized by various techniques, including NMR, ICP-OES, XPS, HAADF-STEM, and XAS. The LnNi-PHI catalysts exhibit exceptional chemical stability and recyclability in diverse C−P, C−S, C−O, and C−N cross-coupling reactions. The proximity and cooperativity effects in LnNi-PHI significantly enhance the photo/Ni dual catalytic activity, thus resulting in low catalyst loadings and high turnover numbers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.