Arctic ungulates are experiencing the most rapid climate warming on Earth. While concerns have been raised that more frequent icing events may cause die‐offs, and earlier springs may generate a trophic mismatch in phenology, the effects of warming autumns have been largely neglected. We used 25 years of individual‐based data from a growing population of wild Svalbard reindeer, to test how warmer autumns enhance population growth. Delayed plant senescence had no effect, but a six‐week delay in snow‐onset (the observed data range) was estimated to increase late winter body mass by 10%. Because average late winter body mass explains 90% of the variation in population growth rates, such a delay in winter‐onset would enable a population growth of r = 0.20, sufficient to counteract all but the most extreme icing events. This study provides novel mechanistic insights into the consequences of climate change for Arctic herbivores, highlighting the positive impact of warming autumns on population viability, offsetting the impacts of harsher winters. Thus, the future for Arctic herbivores facing climate change may be brighter than the prevailing view.
Seasonal energetic challenges may constrain an animal's ability to respond to changing individual and environmental conditions. Here, we investigated variation in heart rate, a well-established proxy for metabolic rate, in Svalbard reindeer ( Rangifer tarandus platyrhynchus ), a species with strong seasonal changes in foraging and metabolic activity. In 19 adult females, we recorded heart rate, subcutaneous temperature and activity using biologgers. Mean heart rate more than doubled from winter to summer. Typical drivers of energy expenditure, such as reproduction and activity, explained a relatively limited amount of variation (2–6% in winter and 16–24% in summer) compared to seasonality, which explained 75% of annual variation in heart rate. The relationship between heart rate and subcutaneous temperature depended on individual state via body mass, age and reproductive status, and the results suggested that peripheral heterothermy is an important pathway of energy management in both winter and summer. While the seasonal plasticity in energetics makes Svalbard reindeer well-adapted to their highly seasonal environment, intraseasonal constraints on modulation of their heart rate may limit their ability to respond to severe environmental change. This study emphasizes the importance of encompassing individual state and seasonal context when studying energetics in free-living animals. This article is part of the theme issue ‘Measuring physiology in free-living animals (Part II)’.
The fasting endurance hypothesis (FEH) predicts strong selection for large body size in mammals living in environments where food supply is interrupted over prolonged periods of time. The Arctic is a highly seasonal and food‐restricted environment, but contrary to predictions from the FEH, empirical evidence shows that Arctic mammals are often smaller than their temperate conspecifics. Intraspecific studies integrating physiology and behaviour of different‐sized individuals may shed light on this paradox. We tested the FEH in free‐living Svalbard reindeer Rangifer tarandus platyrhynchus. We measured daily energy expenditure (DEE), subcutaneous body temperature (Tsc) and activity levels during the late winter in 14 adult females with body masses ranging from 46.3 to 57.8 kg. Winter energy expenditure (WEE) and fasting endurance (FE) were modelled dynamically by combining these data with body composition measurements of culled individuals at the onset of winter (14 years, n = 140) and variation in activity level throughout winter (10 years, n = 70). Mean DEE was 6.3 ± 0.7 MJ/day. Lean mass, Tsc and activity had significantly positive effects on DEE. Across all 140 individuals, mean FE was 85 ± 17 days (range 48–137 days). In contrast to the predictions of the FEH, the dominant factor affecting FE was initial fat mass, while body mass and FE were not correlated. Furthermore, lean mass and fat mass were not correlated. FE was on average 80% (45 days) longer in fat than lean individuals of the same size. Reducing activity levels by ~16% or Tsc by ~5% increased FE by 7% and 4% respectively. Our results fail to support the FEH. Rather, we demonstrate that (a) the size of fat reserves can be independent of lean mass and body size within a species, (b) ecological and environmental variation influence FE via their effects on body composition and (c) physiological and behavioural adjustments can improve FE within individuals. Altogether, our results suggest that there is a selection in Svalbard reindeer to accumulate body fat, rather than to grow structurally large. A free Plain Language Summary can be found within the Supporting Information of this article.
While capture-mark-recapture studies provide essential individual-level data in ecology, repeated captures and handling may impact animal welfare and cause scientific bias. Evaluating the consequences of invasive methodologies should be an integral part of any study involving capture of live animals. We investigated short- and long-term stress responses to repeated captures within a winter on the physiology, behaviour, and reproductive success of female Svalbard reindeer (Rangifer tarandus platyrhynchus). Short-term responses were evaluated using serum concentrations of glucocorticoids and catecholamines during handling, and post-release recovery times in heart rate and activity levels. Repeated captures were associated with an increase in measured catecholamines and glucocorticoids, except cortisone, and delayed recovery in heart rate but not activity. Four months later, in summer, individuals captured repeatedly in winter exhibited a small increase in behavioural response to human disturbance and had a lower probability of being observed with a calf, compared to animals not captured, or captured only once. Our findings imply that single annual capture events have no significant negative consequences for Svalbard reindeer, but repeated captures within a season may impact offspring survival in the same year. Such unanticipated side effects highlight the importance of addressing multiple indicators of animal responses to repeated captures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.