We have used dissipative particle dynamics (DPD) to simulate surfactant monolayers on the interface between oil and water. With a simple surfactant model, we investigate how variations in size and structure of surfactants influence their ability to reduce the interfacial tension. In particular, we studied the effect of branching of the hydrophobic tail. We found that branched surfactants are more efficient at the interface than linear ones only if the head groups are sufficiently hydrophilic to prevent the molecules from staggering. By combining DPD with a Monte Carlo method, we have imposed constant surfactant chemical potential and (normal) pressure in separate simulations of bulk and interface. From this, we can determine the bulk concentration needed to obtain a given interfacial tension. We found that higher concentrations of branched surfactants are required to obtain the same reduction of the interfacial tension. We argue that the stronger excluded volume interactions which make branched surfactants more efficient at the interface compared to their linear isomers at the same time make them less inclined to adsorb at the interface.
The effect of the surfactant chain length n on the bending modulus of surfactant monolayers is simulated with a mesoscopic oil-water-surfactant model. We confirm a power law, / n p , as predicted by mean-field theory and found experimentally, and find p 1:5 at a constant surface density and p 1:0 at a constant interfacial tension. This agrees quite well with both mean-field theory (p 2-3, assuming constant surface density) and experiments (at constant surface tension). Our results suggest that the previously reported agreement between theory and experiment may be fortuitous and caused by the difference in surfactant types.
We have used dissipative particle dynamics to simulate amphiphilic monolayers on the interface between oil and water. An ultralow interfacial tension is imposed by means of Monte Carlo to resemble the amphiphilic films that separate oil and water regions in microemulsions. We calculate the bending modulus by analyzing the undulation spectrum. By varying the surfactant chain length and topology we investigate the effect of surfactant structure and composition of the monolayer on the bending moduli. We find that increasing the thickness has a larger effect than increasing the density of the layer. This follows from the observations that at a given interfacial tension, the bending modulus increases with chain length and is larger for linear than branched surfactants. The increase with chain length is approximately linear, which is slower than the theoretical predictions at a fixed area. We also investigated a binary mixture of short and long surfactants compared to pure layers of the same average chain length. We find a roughly linear decrease in bending modulus with mole fraction of short surfactants. Furthermore, the mixed film has a lower bending modulus than the corresponding pure film for all mole fractions. Linking the bending moduli to the structure of the surfactants is an important step in predicting the stability of microemulsions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.