Viperidae venom has several local and systemic effects, such as pain, edema, inflammation, kidney failure and coagulopathy. Additionally, bothropic venom and its isolated components directly interfere on cellular metabolism, causing alterations such as cell death and proliferation. Inflammatory cells are particularly involved in pathological envenomation mechanisms due to their capacity of releasing many mediators, such as nitric oxide (NO). NO has many effects on cell viability and it is associated to the development of inflammation and tissue damage caused by Bothrops and Bothropoides venom. Bothropoides insularis is a snake found only in Queimada Grande Island, which has markedly toxic venom. Thus, the aim of this work was to evaluate the biological effects of Bothropoides insularis venom (BiV) on RAW 264.7 cells and assess NO involvement. The venom was submitted to colorimetric assays to identify the presence of some enzymatic components. We observed that BiV induced H2O2 production and showed proteolytic and phospholipasic activities. RAW 264.7 murine macrophages were incubated with different concentrations of BiV and then cell viability was assessed by MTT reduction assay after 2, 6, 12 and 24 hours of incubation. A time- and concentration-dependent effect was observed, with a tendency to cell proliferation at lower BiV concentrations and cell death at higher concentrations. The cytotoxic effect was confirmed after lactate dehydrogenase (LDH) measurement in the supernatant from the experimental groups. Flow cytometry analyses revealed that necrosis is the main cell death pathway caused by BiV. Also, BiV induced NO release. The inhibition of both proliferative and cytotoxic effects with L-NAME were demonstrated, indicating that NO is important for these effects. Finally, BiV induced an increase in iNOS expression. Altogether, these results demonstrate that B. insularis venom have proliferative and cytotoxic effects on macrophages, with necrosis participation. We also suggest that BiV acts by inducing iNOS expression and causing NO release.
Glial cells have been implicated in temporal lobe epilepsy in humans and in its models. Astrocytes are lost in several brain regions after acute seizures induced by pilocarpine and may suffer hyperplasia at subsequent time points. This study investigated the effect of N-methyl-(2S,4R)-trans-4-hydroxy-L-proline (NMP) on astrocytes exposed to cytotoxic concentrations of pilocarpine. Astrocytes were incubated with pilocarpine (half maximal inhibitory concentration (IC 50 )=31.86 mM) for 24 h. Afterwards, they were treated with NMP at concentrations ranging from 3.12 to 100 mg/mL for 24 h. Cell viability was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cytoplasmic reactive oxygen species (ROS) and mitochondrial transmembrane potential (DCm) were analyzed by flow cytometry using 2',7'-dichlorofluorescein diacetate (DCFH-DA) and rhodamine-123 (Rho123), respectively. Expression of glial fibrillary acidic protein (GFAP) and voltagedependent anion channel-1 (VDAC-1) were measured by western blot. Pilocarpine significantly decreased cell viability and mitochondrial potential and increased ROS concentration significantly by 6.7 times compared to the control. NMP concentrations X25 mg/mL protected astrocytes against pilocarpine-induced injury in a concentration-dependent manner. Concomitantly, NMP reduced cytoplasmic ROS accumulation to 27.3, 24.8, and 12.3% in the groups treated with 25, 50, and 100 mg/mL NMP, respectively. NMP also protected mitochondria from pilocarpine-induced depolarization. These effects were associated with improvement of pilocarpine-induced GFAP and VDAC-1 overexpression, which are important biomarkers of astrocyte dysfunction. In conclusion, the improvement of ROS accumulation, VDAC-1 overexpression, and mitochondrial depolarization are possible mechanisms of the NMP protective action on reactive astrocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.