Fully aliphatic (isocyanurate ring-based) polyesterether polyurethane (PUR) foams have been developed, and the influence of starch and 2-hydroxyethyl cellulose (HEC) additives on their structure, properties, ecotoxicity, and (abiotic and biotic) degradation has been studied. These PUR foams designed as hydrophilic open-porous materials are predisposed to enzymatic hydrolysis with potential application as cellular carriers and an alternative nutrient source for activated sludge in wastewater treatment plants. In comparison to the neat (nonmodified) PUR foam, the PUR foams with incorporated starch and HEC modifiers exhibited a tougher character and a slightly increased open-cell content but on the other hand a significantly coarser cellular structure with much larger cell sizes and reduced water absorption. The progress of 6-week abiotic hydrolysis was characterized in detail, showing almost a complete decomposition of ester groups, a partial degradation of urethane linkages, and a fully intact isocyanurate ring. The extent of biodegradation by means of bacteria was similar for all tested PUR foams, while fungus biodegradation was more efficient in starch and HEC-modified PUR foams. The leachates from both starch-and HEC-modified foams exhibited somewhat higher ecotoxicity for higher organisms, here represented by Daphnia magna, due to higher contents of leached substances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.