Zika virus (ZIKV) has recently caused a pandemic disease, and many cases of ZIKV infection in pregnant women resulted in abortion, stillbirth, deaths and congenital defects including microcephaly, which now has been proposed as ZIKV congenital syndrome. This study aimed to investigate the in situ immune response profile and mechanisms of neuronal cell damage in fatal Zika microcephaly cases. Brain tissue samples were collected from 15 cases, including 10 microcephalic ZIKV-positive neonates with fatal outcome and five neonatal control flavivirus-negative neonates that died due to other causes, but with preserved central nervous system (CNS) architecture. In microcephaly cases, the histopathological features of the tissue samples were characterized in three CNS areas (meninges, perivascular space, and parenchyma). The changes found were mainly calcification, necrosis, neuronophagy, gliosis, microglial nodules, and inflammatory infiltration of mononuclear cells. The in situ immune response against ZIKV in the CNS of newborns is complex. Despite the predominant expression of Th2 cytokines, other cytokines such as Th1, Th17, Treg, Th9, and Th22 are involved to a lesser extent, but are still likely to participate in the immunopathogenic mechanisms of neural disease in fatal cases of microcephaly caused by ZIKV.
Zika virus genomes from Brazil The Zika virus outbreak is a major cause for concern in Brazil, where it has been linked with increased reports of otherwise rare birth defects and neuropathology. In a phylogenetic analysis, Faria et al. infer a single introduction of Zika to the Americas and estimated the introduction date to be about May to December 2013—some 12 months earlier than the virus was reported. This timing correlates with major events in the Brazilian cultural calendar associated with increased traveler numbers from areas where Zika virus has been circulating. A correlation was also observed between incidences of microcephaly and week 17 of pregnancy. Science , this issue p. 345
Oropouche virus (OROV) is the causative agent of Oropouche fever, an urban febrile arboviral disease widespread in South America, with >30 epidemics reported in Brazil and other Latin American countries during 1960–2009. To describe the molecular epidemiology of OROV, we analyzed the entire N gene sequences (small RNA) of 66 strains and 35 partial Gn (medium RNA) and large RNA gene sequences. Distinct patterns of OROV strain clustered according to N, Gn, and large gene sequences, which suggests that each RNA segment had a different evolutionary history and that the classification in genotypes must consider the genetic information for all genetic segments. Finally, time-scale analysis based on the N gene showed that OROV emerged in Brazil ≈223 years ago and that genotype I (based on N gene data) was responsible for the emergence of all other genotypes and for virus dispersal.
BACKGROUNDSerological evidence of West Nile virus (WNV) infection has been reported in different regions of Brazil from equine and human hosts but the virus had never been isolated in the country.OBJECTIVES We sought to identify the viral etiology of equine encephalitis in Espírito Santo state.METHODS We performed viral culture in C6/36 cells, molecular detection of WNV genome, histopathology and immunohistochemistry from horse cerebral tissue. We also carried out sequencing, phylogenetic analysis and molecular clock.FINDINGS Histopathologic analysis from horse cerebral tissue showed injury related to encephalitis and WNV infection was confirmed by immunohistochemistry. The virus was detected by reverse transcription quantitative polymerase chain reaction (RT-qPCR) from brain tissue and subsequently isolated in C6/36 cells. WNV full-length genome was sequenced showing the isolated strain belongs to lineage 1a. The molecular clock indicated that Brazilian WNV strain share the same common ancestor that were circulating in US during 2002-2005.MAIN CONCLUSIONS Here we report the first isolation of WNV in Brazil from a horse with neurologic disease, which was clustered into lineage 1a with others US WNV strains isolated in beginning of 2000’s decade.
Zika virus (ZIKV) has caused substantial concern worldwide owing to its association with severe birth defects, such as microcephaly and other congenital malformations. Inflammasomes, i.e., multi-protein complexes that induce inflammation and pyroptosis, are predicted to contribute to the immune response to this flavivirus. Accordingly, in this study, the in situ inflammasome response was evaluated in fatal cases of ZIKV-linked microcephaly. Brain tissue samples were collected from eight babies, including four ZIKV-positive microcephalic neonates who died after birth and four flavivirus-negative neonatal controls who died of other causes and whose central nervous system (CNS) architecture was preserved. In the ZIKV-positive newborn/stillbirth babies, the major histopathological alterations included atrophy of the cortical layer, a predominance of mononuclear cell infiltration in the Virchow-Robin space, neuronal necrosis, vacuolization and neuronal degeneration, neuronophagy, and gliosis. An immunohistochemical analysis of tissues in the neural parenchyma showed significantly higher expression of the receptors NLRP1, NLRP3, and AIM2, cytokines IL-1β, IL-18, and IL-33, and enzymes caspase 1, iNOS, and arginase 1 in ZIKV-positive microcephaly cases than in flavivirus-negative controls. These results suggest that inflammasome activation can aggravate the neuroinflammatory response and consequently increase CNS damage in neonates with fetal neural ZIKV infection and microcephaly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.