This paper proposes a protocol for the acquisition and processing of biophysical signals in virtual reality applications, particularly in phobia therapy experiments. This protocol aims to ensure that the measurement and processing phases are performed effectively, to obtain clean data that can be used to estimate the users’ anxiety levels. The protocol has been designed after analyzing the experimental data of seven subjects who have been exposed to heights in a virtual reality environment. The subjects’ level of anxiety has been estimated based on the real-time evaluation of a nonlinear function that has as parameters various features extracted from the biophysical signals. The highest classification accuracy was obtained using a combination of seven heart rate and electrodermal activity features in the time domain and frequency domain.
Emotions constitute an indispensable component of our everyday life. They consist of conscious mental reactions towards objects or situations and are associated with various physiological, behavioral, and cognitive changes. In this paper, we propose a comparative analysis between different machine learning and deep learning techniques, with and without feature selection, for binarily classifying the six basic emotions, namely anger, disgust, fear, joy, sadness, and surprise, into two symmetrical categorical classes (emotion and no emotion), using the physiological recordings and subjective ratings of valence, arousal, and dominance from the DEAP (Dataset for Emotion Analysis using EEG, Physiological and Video Signals) database. The results showed that the maximum classification accuracies for each emotion were: anger: 98.02%, joy:100%, surprise: 96%, disgust: 95%, fear: 90.75%, and sadness: 90.08%. In the case of four emotions (anger, disgust, fear, and sadness), the classification accuracies were higher without feature selection. Our approach to emotion classification has future applicability in the field of affective computing, which includes all the methods used for the automatic assessment of emotions and their applications in healthcare, education, marketing, website personalization, recommender systems, video games, and social media.In the 1970s, Paul Ekman identified six basic emotions [2], namely anger, disgust, fear, joy, sadness, and surprise. Russell and Mehrabian proposed a dimensional approach [3] which states that any emotion is represented relative to three fundamental dimensions, namely valence (positive/pleasurable or negative/unpleasurable), arousal (engaged or not engaged), and dominance (degree of control that a person has over their affective states).Joy or happiness is a pleasant emotional state, synonymous with contentment, satisfaction and well-being. Sadness is the opposite of happiness, being characterized by grief, disappointment, and distress. Fear emerges in the presence of a stressful or dangerous stimulus perceived by the sensory organs. When the fight or flight response appears, heart rate and respiration rate increase. Also, the muscles become more tense in order to contend with threats in the environment. Anger is defined by fury, frustration, and resentment towards others. Surprise is triggered by an unexpected outcome to a situation, ranging from amazement to shock, whereas disgust is synonymous with dislike, distaste, or repugnance, being the most visceral of all six emotions.The DEAP database [4] was created with the purpose of developing a music video recommendation system based on the users' emotional responses. The biophysical signals of 32 subjects have been recorded while they were watching 40 one-minute long excerpts of music videos eliciting various emotions. The participants rated each video in terms of valence, arousal, dominance, like/dislike and familiarity on a scale from one to nine. The physiological signals were: galvanic skin response (GSR), plethysmograph (PP...
Due to their outstanding properties, quantum dots (QDs) received a growing interest in the biomedical field, but it is of major importance to investigate and to understand their interaction with the biomolecules. We examined the stability of silicon QDs and the time evolution of QDs – protein corona formation in various biological media (bovine serum albumin, cell culture medium without or supplemented with 10% fetal bovine serum-FBS). Changes in the secondary structure of BSA were also investigated over time. Hydrodynamic size and zeta potential measurements showed an evolution in time indicating the nanoparticle-protein interaction. The protein corona formation was also dependent on time, albumin adsorption reaching the peak level after 1 hour. The silicon QDs adsorbed an important amount of FBS proteins from the first 5 minutes of incubation that was maintained for the next 8 hours, and diminished afterwards. Under protein-free conditions the QDs induced cell membrane damage in a time-dependent manner, however the presence of serum proteins attenuated their hemolytic activity and maintained the integrity of phosphatidylcholine layer. This study provides useful insights regarding the dynamics of BSA adsorption and interaction of silicon QDs with proteins and lipids, in order to understand the role of QDs biocorona.
This paper focuses on the binary classification of the emotion of fear, based on the physiological data and subjective responses stored in the DEAP dataset. We performed a mapping between the discrete and dimensional emotional information considering the participants’ ratings and extracted a substantial set of 40 types of features from the physiological data, which represented the input to various machine learning algorithms—Decision Trees, k-Nearest Neighbors, Support Vector Machine and artificial networks—accompanied by dimensionality reduction, feature selection and the tuning of the most relevant hyperparameters, boosting classification accuracy. The methodology we approached included tackling different situations, such as resolving the problem of having an imbalanced dataset through data augmentation, reducing overfitting, computing various metrics in order to obtain the most reliable classification scores and applying the Local Interpretable Model-Agnostic Explanations method for interpretation and for explaining predictions in a human-understandable manner. The results show that fear can be predicted very well (accuracies ranging from 91.7% using Gradient Boosting Trees to 93.5% using dimensionality reduction and Support Vector Machine) by extracting the most relevant features from the physiological data and by searching for the best parameters which maximize the machine learning algorithms’ classification scores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.