Wood is increasingly considered in sustainable structural materials development due to its hierarchical structure, including an oriented reinforcing cellulose phase combined with carbon capturing and renewability. Top-down manufacturing techniques can provide direct access to this hierarchical cellulose scaffold for use in new functional materials. For high-performance load-bearing wood-based materials, the volume content of the reinforcing phase needs to be increased to much higher fiber volume contents (FVCs). This has been achieved by structure-retaining delignification followed by densification. The obtained matrix-free materials possess high tensile stiffness due to preservation of hierarchical fiber alignment; however, they demonstrate low mechanical properties in bending and cannot be used in moist conditions due to their propensity for water absorption. In order to address these two challenges, an interpenetrating wood polymer phase composite is developed using a delignified wood scaffold as a continuous reinforcing phase and epoxy resin as the interconnected matrix phase. We utilize the continuous flow channels in delignified wood for vacuum-assisted matrix infiltration in a condition of open continuous porosity in the wood scaffold. Prior to matrix curing, the material is densified in order to increase the FVC, decrease porosity, and reduce density variations in the wood scaffold. Due to the compressibility of delignified cellulose fibers, interpenetrating phase composites (IPCs) with very high FVCs of up to 80% could be produced, leading to exceptionally high tensile stiffness and strength of up to 70 GPa and 600 MPa. The obtained stiffness values far exceed the upper limit of the rule of mixtures due to an enhanced stress transfer through mechanically interlocked fiber−fiber interfaces combined with the stiffness providing matrix phase that further aids stress transfer between neighboring wood cells via their pits. This new approach paves the way for an efficient production of high-performance sustainable materials that can be used as alternative for glass fiber reinforced composites or natural fiber composites.
Injectable hydrogels from biocompatible materials are in demand for tissue engineering and drug delivery systems. Here, we produce hydrogels from mere cellulose nanocrystals (CNCs) by salt-induced charge screening. The injectability of CNC hydrogels was assessed by a combination of shear and capillary rheology, revealing that CNC hydrogels are conveyed via plug flow in capillaries allowing injection with minimal impact on mechanical properties. The potential of CNC hydrogels as drug carriers was elaborated by the in vitro release of the model protein bovine serum albumin (BSA), poorly water soluble tetracycline (TC), and readily soluble doxorubicin (DOX) into physiological saline and simulated gastric juice. For TC, a burst release was observed within 2 days, whereas BSA and DOX both showed a sustained release for 2 weeks. Only DOX was released fully from the hydrogels. The different release patterns were attributed to drug size, solubility, and specific drug–CNC interactions. The biocompatibility of CNC hydrogels and maintained bioactivity of released DOX were confirmed in a HeLa cell assay. The drug release was modulated by the incorporation of sucrose or xanthan gum in CNC hydrogels, whereas altering CNC concentration showed minor effects. The release into simulated gastric juice at pH 2 ceased for BSA due to charge inversion and electrostatic complexation, but not for smaller TC. Thus, CNC hydrogels may act as pH-responsive delivery systems that preserve drugs under gastric conditions followed by pH-triggered release in the duodenum.
The need for renewable bio-based materials that could replace wellestablished synthetic composite materials is rapidly growing. For example, bio-based materials are increasingly used in applications where a lightweight design should be combined with sustainability and recyclability. However, it is often very challenging to directly transfer the excellent properties of biological materials to a product in a scalable and cost-efficient manner. In this study, we combined delignified wood layers (veneers) and a starch-based glue into bio-based high-performance composites. First, we investigated the ideal amount of starch-based glue between the layers to prevent delamination in the final composite. Then, we produced laminates in unidirectional, cross-ply, and quasi-isotropic configurations using wet processing. Laminates with tensile properties up to 40 GPa and 200 MPa in tensile stiffness and strength, respectively, were fabricated with a very high fiber volume content of up to 80%. The high fiber volume contents led to mechanical interlocks between neighboring fibers and made the need for an additional matrix unnecessary. The water-based laminate process is cost-efficient and scalable and additionally allows one to make full use of delignified wood's formability by producing shaped parts for various applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.