Several systems have been presented in the last years in order to manage the complexity of large microarray experiments. Although good results have been achieved, most systems tend to lack in one or more fields. A Grid based approach may provide a shared, standardized and reliable solution for storage and analysis of biological data, in order to maximize the results of experimental efforts. A Grid framework has been therefore adopted due to the necessity of remotely accessing large amounts of distributed data as well as to scale computational performances for terabyte datasets. Two different biological studies have been planned in order to highlight the benefits that can emerge from our Grid based platform. The described environment relies on storage services and computational services provided by the gLite Grid middleware. The Grid environment is also able to exploit the added value of metadata in order to let users better classify and search experiments. A state-of-art Grid portal has been implemented in order to hide the complexity of framework from end users and to make them able to easily access available services and data. The functional architecture of the portal is described. As a first test of the system performances, a gene expression analysis has been performed on a dataset of Affymetrix GeneChip ® Rat Expression Array RAE230A, from the ArrayExpress database. The sequence of analysis includes three steps: (i) group opening and image set uploading, (ii) normalization, and (iii) model based gene expression (based on PM/MM difference model). Two different Linux versions (sequential and parallel) of the dChip software have been developed to implement the analysis and have been tested on a cluster. From results, it emerges that the parallelization of the analysis process and the execution of parallel jobs on distributed computational resources actually improve the performances. Moreover, the Grid environment have been tested both against the possibility of uploading and accessing distributed datasets through the Grid middleware and against its ability in managing the execution of jobs on distributed computational resources. Results from the Grid test will be discussed in a further paper.
Background: Microarray techniques are one of the main methods used to investigate thousands of gene expression profiles for enlightening complex biological processes responsible for serious diseases, with a great scientific impact and a wide application area. Several standalone applications had been developed in order to analyze microarray data. Two of the most known free analysis software packages are the R-based Bioconductor and dChip. The part of dChip software concerning the calculation and the analysis of gene expression has been modified to permit its execution on both cluster environments (supercomputers) and Grid infrastructures (distributed computing).
BackgroundComplex microarray gene expression datasets can be used for many independent analyses and are particularly interesting for the validation of potential biomarkers and multi-gene classifiers. This article presents a novel method to perform correlations between microarray gene expression data and clinico-pathological data through a combination of available and newly developed processing tools.ResultsWe developed Survival Online (available at ), a Web-based system that allows for the analysis of Affymetrix GeneChip microarrays by using a parallel version of dChip. The user is first enabled to select pre-loaded datasets or single samples thereof, as well as single genes or lists of genes. Expression values of selected genes are then correlated with sample annotation data by uni- or multi-variate Cox regression and survival analyses. The system was tested using publicly available breast cancer datasets and GO (Gene Ontology) derived gene lists or single genes for survival analyses.ConclusionThe system can be used by bio-medical researchers without specific computation skills to validate potential biomarkers or multi-gene classifiers. The design of the service, the parallelization of pre-processing tasks and the implementation on an HPC (High Performance Computing) environment make this system a useful tool for validation on several independent datasets.
Scientific gateways in the form of web portals are becoming the popular approach to share knowledge and resources around a topic in a community of researchers. Unfortunately, the development of web portals is expensive and requires specialists skills. Commercial and more generic web portals have a much larger user base and can afford this kind of development. Here we present two solutions that address this problem in the area of portals for scientific computing; both take the same approach. The whole process of designing, delivering and maintaining a portal can be made more cost-effective by generating a portal from a description rather than programming in the traditional sense. We show four successful use cases to show how this process works and the results it can deliver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.