We investigated the effects on human keratinocytes (HaCaT) of exposure to a sinusoidal magnetic field of 2 mT (50 Hz). These cells are a good model for studying interaction of nonionising radiation, because they are not shielded from fields in vivo and also because they are resistant to both mechanical and thermal stimuli. We performed scanning microscopy which showed modification in shape and morphology in exposed cells. This modification is related to differential actin distribution as revealed by phalloidin fluorescence analysis. Moreover, the exposed cells show increased clonogenic capacity, as well as increased cellular growth as showed by clonogenicity assays and growth curves. Indirect immunofluorescence analysis using a fluorescent antibody against involucrin and beta4 integrin, which are respectively differentiation and adhesion markers, revealed an increase of involucrin expression and segregation of beta4 integrin in the cell membrane in cells exposed to 50 Hz; a higher percentage of the exposed cells shows a modified pattern of adhesion and differentiation markers. We also present evidence that exposure of HaCaT cells can interfere with protein kinase activity. Our observations confirm the hypothesis that electromagnetic fields at 50 Hz may modify cell membrane morphology and interfere with initiation of the signal cascade pathway and cellular adhesion.
These results suggest that ELF-EMFs tuned at Ca2+-ICR could be used to drive cardiac-specific differentiation in adult cardiac progenitor cells without any pharmacological or genetic manipulation of the cells that will be used for therapeutic purposes.
This study shows that high doses of intracoronary adenosine (up to 720 μg) increased the sensitivity of FFR in the detection of hemodynamically relevant coronary stenoses. Furthermore, lesion length and stenosis severity were independent angiographic determinants of FFR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.